{
"cells": [
{
"cell_type": "markdown",
"id": "fa500625-37f2-4353-bd95-2950d0d818f5",
"metadata": {
"editable": true,
"slideshow": {
"slide_type": "slide"
},
"tags": []
},
"source": [
"# Matplotlib\n",
"## Data Visualization"
]
},
{
"cell_type": "markdown",
"id": "1157dd13-e5af-4a5c-9c7a-bbc755aa0b70",
"metadata": {},
"source": [
"- It is said that a picture is worth a 1000 words"
]
},
{
"cell_type": "markdown",
"id": "c29638f6-621e-482a-8da7-a14e98fd0c92",
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"source": [
"- In technical communication, a __good figure__ is worth a 1000 words"
]
},
{
"cell_type": "markdown",
"id": "32e8228b-0550-4119-a6b7-bd93658f763d",
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"source": [
"- Minard’s map of Napoleon’s Russian campaign of 1812 is often described as the best graphic ever produced\n",
" - Includes information of the troop size, location, temperature, travel direction and time"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "d28e460e-82b3-4589-a79e-33625f1f70fd",
"metadata": {},
"source": [
"\n",
"\n",
"
\n",
"Minard's map
\n",
"Source: \n",
" Wikimedia\n",
"
\n", "Source: \n", " matplotlib.org\n", "
" ] }, { "cell_type": "markdown", "id": "1efd5072-46e9-4205-b649-ffd5d7df1623", "metadata": { "cell_style": "split", "editable": true, "slideshow": { "slide_type": "fragment" }, "tags": [] }, "source": [ "- All matplotlib plots have three main elements\n", " - A _Figure_ object \n", " - The main _canvas_ or _stage_\n", " - All the other figure elements are _artists_ that act to create the final graphic\n", " - _Axis_ objects (x, y, z axes)\n", " - Control the limits of the plots\n", " - Contains the ticks and tick labels\n", " - _Axes_ objects\n", " - The actual data to be visualized\n", " - ..." ] }, { "cell_type": "markdown", "id": "166172f5-c020-4651-81b4-cf482cf9c369", "metadata": { "editable": true, "hideCode": false, "slideshow": { "slide_type": "slide" }, "tags": [] }, "source": [ "## Matplotlib Examples" ] }, { "cell_type": "markdown", "id": "f19b6482-5204-483e-a34d-009391d2d499", "metadata": { "hideCode": false }, "source": [ "- See https://matplotlib.org/stable/gallery/index.html for more examples" ] }, { "cell_type": "markdown", "id": "4d28855b-134c-436c-8d69-8d7727915609", "metadata": { "cell_style": "split", "hideCode": false, "slideshow": { "slide_type": "fragment" } }, "source": [ "- [A simple plot](https://matplotlib.org/stable/gallery/lines_bars_and_markers/simple_plot.html#sphx-glr-gallery-lines-bars-and-markers-simple-plot-py)\n", " - $V(t) = 1 + sin(2\\pi t)$" ] }, { "attachments": {}, "cell_type": "markdown", "id": "7445c2e3-8f73-4dd1-8503-210750dc7468", "metadata": { "cell_style": "split", "hideCode": false, "slideshow": { "slide_type": "-" } }, "source": [ "Bad Plot
" ] }, { "cell_type": "markdown", "id": "9f5a678c-f30f-435a-98fd-184318e33eb8", "metadata": { "cell_style": "split", "slideshow": { "slide_type": "fragment" } }, "source": [ "Better Plot
" ] }, { "cell_type": "markdown", "id": "3ba22b60-1447-4431-8988-23f916911d5b", "metadata": {}, "source": [ "- Experimental data is NEVER connected with lines (just use markers)\n", " - Lines are used for mathematical functions or trend lines (curve fits)\n", " - Use error bars when available" ] }, { "cell_type": "markdown", "id": "18e0b34d-f027-4263-92b6-b144c4b78d1f", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "- Pay attention to font size\n", " - If it looks good on the computer screen it’s good for written reports\n", " - Increase the font size a few points for presentations" ] }, { "cell_type": "markdown", "id": "63f56a3e-36f4-4095-b6c8-f95ede76c45a", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "- Example" ] }, { "cell_type": "markdown", "id": "1c01e969-36fe-4887-933e-0a758d3a35cf", "metadata": { "cell_style": "split" }, "source": [ "Bad Plot
" ] }, { "cell_type": "markdown", "id": "ca7f19ed-f42d-43ac-acff-b86ea20a2503", "metadata": { "cell_style": "split", "slideshow": { "slide_type": "fragment" } }, "source": [ "Better Plot
" ] }, { "cell_type": "markdown", "id": "de15fd97-3a27-4035-95c9-89940f729091", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "## Matplotlib Plotting Interfaces" ] }, { "cell_type": "markdown", "id": "4ef49702-ceca-454c-aecb-6ff9abf8b1be", "metadata": {}, "source": [ "- Matplotlib provides two interfaces for plotting: matlab-style and object-oriented interfaces" ] }, { "cell_type": "markdown", "id": "ad438be1-04c4-4610-aded-cd9182c6b008", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "- A Matlab-style interface \n", " - Uses the `pyplot` sub-module to create plots\n", " - This interface imitates Matlab plotting – the original goal of matplotlib\n", " - Works with an active figure that is modified as needed across different function calls until the figure is either closed or a new figure is explicitly created" ] }, { "cell_type": "markdown", "id": "34f3a3b9-946a-49bc-9eba-146a40b36dd5", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "- The object-oriented interface\n", " - Uses the `Axes` object for plotting\n", " - No notion of an active figure \n", " - Provides better control over the figure" ] }, { "cell_type": "markdown", "id": "7dd63af2-a39c-4c20-8f9e-ef90c133d8ae", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "### Pyplot Interface: Example" ] }, { "cell_type": "code", "execution_count": 43, "id": "3e7bf653-c80a-4fcc-bdf1-963adb8d95ae", "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "5ab55ea0e0184e03904ad67f17dc411a", "version_major": 2, "version_minor": 0 }, "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAHgCAYAAAA10dzkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB8pUlEQVR4nO3dd1QU198G8GcpIoiigigC9oaKNdZIlNiiWLFDYg8mQY3GEjX6s0TFmlijQixRASvYu6KgRo0oqInYu0RUpElRdu/7x7wQEVDqzpbnc84e3NnL7jMMyXy5M/dehRBCgIiIiIj0hoHcAYiIiIhIvVgAEhEREekZFoBEREREeoYFIBEREZGeYQFIREREpGdYABIRERHpGRaARERERHqGBSARERGRnmEBSERERKRnWAASERER6RkWgERERER6hgUgERERkZ5hAUhERESkZ1gAEhEREekZFoBEREREeoYFIBEREZGeYQFIREREpGdYABIRERHpGRaARERERHqGBSARERGRnmEBSERERKRnWAASERER6RkWgERERER6hgUgERERkZ5hAUhERESkZ1gAEhEREekZFoBEREREeoYFIBEREZGeYQFIREREpGdYABIRERHpGRaARERERHqGBSARERGRnmEBSERERKRnWAASERER6RkWgEREGkYIIXcEItJxLACJiDREXFwcvvzyS5QoUQJmZmZyxyEiHcYCkIjyZPDgwVAoFBkeJUuWRKdOnXD+/PkC/az79+9DoVBgw4YNBfq+adq0aYM2bdoUynvnxsyZM7Fjxw4sWbIEBw4ckDsOEekwFoBElGdly5ZFUFAQgoKCcOLECSxbtgzPnz9H69atceHCBbnjFXrhWKlSJQwePLjA3i8oKAidOnXCsGHDNKIgJSLdZSR3ACLSXkWLFs1UqLi6uqJ69eqYM2cOdu/eLU8wLZKamgojI+l/xdHR0ahXr57MiYhIH7AHkIgKlLm5OT799FNERETg8uXLUCgUWLJkSYY2/fr1Q9myZZGamooZM2agbNmy2LBhA6pXrw4TExPUrVv3o5dAk5OTMXHiRNjZ2cHExAQODg5YvXp1+utt2rRB5cqVAQBDhgyBQqHI8T4MHjwYDRo0gK+vL2rWrAkzMzM0adIE586dAwDMmDEDCoUCDx48wB9//AGFQoGTJ0+mf//69etRu3ZtFC1aFA4ODtiyZUv6aydPnoRCocCcOXNQr149mJmZpW979/1mzJgBAFCpVPjll19Qu3ZtmJmZwd7eHqNGjUJ8fHyGzKdPn4aTkxPMzMxgY2ODr776Cv/++2+GNnv37kXjxo1RtGhRVKlSBUuXLs3xz4SIdIwgIsqDQYMGiYoVK2b5WsOGDcWnn34qhBDC0dFRNGvWLP215ORkYW5uLkaNGiWEEGL69OkCgPjkk0/Etm3bxObNm0W9evWEsbGxuHXrlhBCiHv37gkAYv369env07VrV2FqairmzZsndu/eLUaMGCEAiLlz5wohhLh8+bLw9/cXAMSPP/4ogoKCst2X1q1bi9atW2fYtyJFioj69euLLVu2iK1bt4pq1aoJW1tbkZKSIu7duyeCgoJE2bJlRceOHUVQUJB49eqVEEKIxYsXC4VCIX744QexZ88eMXz4cGFgYCD+/PNPIYQQQUFBAoCwtrYW3t7e4siRI+LVq1eZ3u/evXtCCCGmTJkizMzMxIIFC8Thw4fFmjVrRJkyZcTAgQPT8964cUMULVpUtG/fXuzevVusW7dO2Nraivr164uUlBQhhBDbt28XCoVCDBo0SOzZs0dMmjRJABBbt2798IEmIp3EApCI8mTQoEGiQoUKIikpSSQlJYnExERx584d8cMPPwgAYs2aNUIIIRYtWiQAiLt37wohhNi7d68AIM6fPy+E+K8AjI6OTn/vyMhIUaRIkfQi8f0C8OjRo5kKwrRMpqam6e+VVeGYlawKwOLFi4sXL16kb9u8ebMAIP7555/0bRUrVhSDBg1Kfx4fHy/MzMzEsGHDMrx/06ZNRZ8+fYQQ/xWAWRVe77+fEEKEh4eLa9euCSGEUKlUIikpSYwfP15YWlqmt/nyyy9FhQoV0os9IYTYv3+/ACBOnjwpVCqVqFixomjbtm2G9+7bt69o0qTJB382RKSbeAmYiPLs4cOHMDU1hampKczMzFC1alVs3LgRy5Ytg4eHBwDA3d0dhoaG6ZdBAwICUL16dTRt2jTDe5UqVSr93+XKlUOrVq0QFhaW5ecePXoUxsbGcHd3z7B98ODBSEpKwp9//pnvfStdujQsLS3Tn9va2gIAoqKisv2es2fPIjExEa6urkhOTk5/tGzZMtOgGGtr6xzlqFu3Lk6dOpV+udjU1BSLFi3Cy5cv09sEBwfj888/R5EiRdK3tW/fHtevX0fDhg1x69YtPHjwAL169cqQq0WLFrh06RJSU1NzlIWIdAcHgRBRnpUrVw6BgYEAAAMDA9jY2MDW1hYGBgYZ2nTs2BFbtmzBxIkTsXfvXowcOTJH7/3XX39l+dqLFy9QpkwZGBsbZ9ieVqS9WxwVNPGBSZrTikMXF5dMr6UN9MitSZMm4ZdffsGECRPQpk0bWFhY4Pfff8fatWvT2zx58gR2dnYZvs/Y2Bi1atUCAFy5cgUA8N133+G7777L9BnPnj1L/9kRkX5gAUhEeWZiYoLmzZt/tN2gQYPQr18/rFmzBi9evMjUc5eVf//9FzY2Nlm+ZmVlhefPn+Pt27cZisCnT58CAMqUKZPDPShY5ubmAIA//vgDNWrUKJD3XLduHQYOHAgvL6/0bYcOHcrQxtbWNn3fP5Rr3rx5aN26dabXraysCiQrEWkPXgImokLXrVs3lCxZEhMnTkSzZs1QrVq1TG1iYmLS//3vv//i9OnT+OSTT7J8v/bt2+Pt27cZRtcCwKZNm1CsWDG0aNECANJ7Ij/Ua5cfBgYGGd67RYsWMDY2xv3799G8efP0R+3atVG7du08fYZKpcpwaRcAwsPDMzx3cnLCqVOnMlzKPXv2LKysrHD48GHUqVMHlpaWuHHjRoZcjRo1QpUqVWBiYpKnbESkvdgDSESFrmjRouk9gNn1/rVv3x4TJ05Eamoq5s2bBwMDA3z//fdZtm3Xrh06d+6MESNG4OnTp3BwcMCRI0ewdu1aLFiwABYWFgCkiaqNjIywZcsWmJmZoXfv3jA0NCyw/bKzs0NISAj8/PzQpk0blC9fHhMmTMCsWbMQGxuLzz//HC9fvsTcuXPxySefYPPmzbn+jB49emDTpk2oW7cuKlasiI0bN2LXrl0AgISEBJibm2Pq1Klo0KABevTogREjRuDly5eYMWMGrKys8Nlnn8HY2BheXl7p92X26NEDSUlJ+PXXX2FkZITTp08X2M+EiLSEzINQiEhLfWgamKz4+/sLIyMjERUVlWF72ijg9evXi2rVqgljY2NRt25dceTIkfQ2WY3mTUxMFOPGjRPly5cXxsbGolatWukjj9+1ZMkSUapUKWFlZSWSkpKyzJbVKOD39y1t9O6708kEBQWJSpUqCXNz8wzbly5dKmrUqCGMjY2FjY2NGD16tIiPj8/2fdJkNQo4Li5ODB8+XJQpU0YUL15cuLu7izVr1oiaNWuKy5cvp7c7deqU+PTTT0XRokVFuXLlxLBhwzL9rP38/ET9+vVFkSJFhJWVlRg4cKB49uxZlj8TItJtCiEK6doIEdE7evfujcTExEwTPM+YMQMzZ84stMu0RESUGS8BE1Gh2rNnD4KCghAQEICjR4/KHYeIiMACkIgK2dSpU/HkyRP8+uuvaNu2rdxxiIgIAC8BExEREekZTgNDREREpGdYABIRERHpGRaARERERHqGBSARERGRnuEo4HxQqVR4+vQpihcvDoVCIXccIiIiygEhBOLj41G+fPn0JSP1DQvAfHj69Cns7e3ljkFERER58OjRI9jZ2ckdQxYsAPOhePHiAKRfoBIlSsichoiIiHIiLi4O9vb26edxfcQCMB/SLvuWKFGCBSAREZGW0efbt/TzwjcRERGRHmMBSERERKRnWAASERER6RkWgERERER6hgUgERERkZ5hAUhERESkZ1gAEhEREekZFoBEREREekanC8Dp06dDoVDg/v37Wb6+detWVKtWDebm5mjTpg3+/vtv9QYkIiIikoHOFoB3797FokWLsn09LCwMX375JcaMGYNz586hSpUqaNu2LRITE9WYkoiIiEj9dLYAHD16NPr165ft61u2bEG7du0wcuRI1K1bF6tWrcLr169x4sQJNaYkIiIiUj+dLAB3796Nf/75BxMnTsy2TUREBBwdHdOfm5iYoGbNmrh586Y6IhIRERHJRucKwKSkJIwZMwa//vorihYtmm27+Ph4mJmZZdhWrFgxJCQkZPs9KSkpiIuLy/AoDMnJydi5cyeSk5ML5f2JiIg0Hc+FhUvnCkAvLy/UqlUL3bt3/2A7pVKZaZtCoYBKpfrge1tYWKQ/7O3t8503K/fu3UPv3r1x8ODBQnl/IiIiTXfgwAH07t0724GclD86VQDeuXMHS5cuxbJlyz7a1sDAIFOxJ4SAkZFRtt8zefJkxMbGpj8ePXqU78xZcXBwQMOGDeHr61so709ERKTpfH190ahRI9SqVUvuKDpJpwrAxYsXIyEhAQ0bNoS5uTnq1KkDAKhTpw7mzp2boa25uTmio6MzbIuOjkaJEiWyfX8TExOUKFEiw6OwuLu7Y9++fYiNjS20zyAiItJEMTEx2LdvH9zd3eWOorN0qgCcMWMGbty4gbCwMISFheHAgQMApG7kb775JkNbBwcHhIaGpj9PSEjAnTt34ODgoNbM2enfvz/evHmDgIAAuaMQERGpVUBAAN6+fYv+/fvLHUVnKYQQQu4QheX+/fuoXLky7t27h0qVKiEpKQmmpqYAgPDwcDRu3BheXl7o3LkzFi9ejGPHjuH27dsoUqRIjt4/Li4OFhYWiI2NLZTewM8//xwGBgY4duxYgb83ERGRpmrbti0A4Pjx44Xy/oV9/tYGOtUD+CHJycmoXLkyzp07BwCoX78+/P39sWbNGjRs2BARERHYv39/jos/dXB3d8eJEyfw9OlTuaMQERGpxZMnTxAUFMTLv4VMp3sAC1th/wURExODsmXLYt68eRg7dmyBvz8REZGm+eWXXzBlyhQ8e/YMFhYWhfIZ7AHUox5AbVSyZEm4uLhwNDAREekNX19fuLi4FFrxRxIWgBrO3d0doaGhuHHjhtxRiIiIClVERAQuXbrEy79qwAJQw7m4uKBEiRLw8/OTOwoREVGh8vPzg4WFBTp37ix3FJ3HAlDDFS1aFL169YKvry94uyYREekqIQR8fX3Rq1evDy7lSgWDBaAWcHd3x507d3DhwgW5oxARERWK8+fP4+7du7z8qyYsALVAmzZtYGNjw8vARESks/z8/FC+fHm0bt1a7ih6gQWgFjA0NET//v2xZcsWpKamyh2HiIioQKWmpmLr1q3o378/DA0N5Y6jF1gAagl3d3dERUUV2qzoREREcjl27BiioqJ4+VeNWABqiUaNGqFGjRq8DExERDrHz88PNWvWRMOGDeWOojdYAGoJhUIBd3d3BAQEIDExUe44REREBSIxMRGBgYFwd3eHQqGQO47eYAGoRdzc3JCQkIB9+/bJHYWIiKhA7N27FwkJCXBzc5M7il5hAahFqlWrhqZNm3JpOCIi0hm+vr5o1qwZqlatKncUvcICUMu4u7vj4MGDiI6OljsKERFRvrx8+RIHDx7k4A8ZsADUMv369YNSqcSOHTvkjkJERJQvO3bsgBACffv2lTuK3mEBqGXKli2Ldu3a8TIwERFpPV9fX7Rr1w5ly5aVO4reYQGohdzd3REcHIyHDx/KHYWIiChPHjx4gJCQEF7+lQkLQC3Us2dPFC1aFFu2bJE7ChERUZ5s2bIFpqam6NGjh9xR9BILQC1UvHhxdOvWjZeBiYhIa/n6+qJbt24oXry43FH0EgtALeXu7o4rV67g2rVrckchIiLKlatXr+Lq1au8/CsjFoBa6osvvkCpUqW4NBwREWkdPz8/lC5dGh07dpQ7it5iAailihQpgj59+sDPzw8qlUruOERERDmiUqng5+eHPn36oEiRInLH0VssALWYu7s7Hjx4gLNnz8odhYiIKEfOnDmDhw8f8vKvzFgAarFWrVrB3t6el4GJiEhr+Pn5oUKFCvj000/ljqLXWABqMQMDAwwYMADbtm3D27dv5Y5DRET0QW/evMG2bdswYMAAGBiwBJETf/pazt3dHS9fvsThw4fljkJERPRBhw8fRnR0NC//agAWgFquXr16qFu3Li8DExGRxvPz84OjoyMcHR3ljqL3WADqADc3N+zevRsJCQlyRyEiIspSfHw8du/eDTc3N7mjEFgA6gQ3NzckJiZi9+7dckchIiLK0u7du5GUlIQBAwbIHYXAAlAnVKxYEa1ateLScEREpLF8fX3h5OSEihUryh2FwAJQZ7i5ueHIkSOIioqSOwoREVEGUVFROHr0KC//ahCdLAAfP36MHj16oGTJkqhYsSLmz5+fbVsnJycoFIoMjy1btqgxbcHo06cPFAoFtm/fLncUIiKiDLZt2waFQoE+ffrIHYX+n5HcAQqaSqVCz549YWdnl2G2cXt7+yz/8nj27BnWrVuH9u3bp2+ztLRUZ+QCYWVlhS+++AK+vr7w9PSUOw4REVE6X19fdOrUSSvPr7pK53oAb926hYsXL2LVqlWoU6cOOnXqhP79+2Pfvn1Zto+KioKDgwPs7OzSH6ampmpOXTDc3Nzw559/4u7du3JHISIiAgDcuXMH586d4+VfDaNzBWD16tURHx+PcuXKpW8zNjZGYmJiprYpKSmIjY1F2bJl1Rmx0HTr1g3FihWDv7+/3FGIiIgAAP7+/jA3N0e3bt3kjkLv0LkC0MDAAObm5unPw8LC4Ofnh4EDB2ZqmzZgYvjw4ShbtiyaNm2K48ePZ/veKSkpiIuLy/DQJMWKFUPPnj3h6+sLIYTccYiISM8JIeDr64uePXvCzMxM7jj0Dp0rANPs2rULpqamaNiwIbp06QJXV9dMbQwNDdGhQwcMHToUR44cgZOTE1xcXPDgwYMs39PLywsWFhbpD3t7+8LejVxzc3PD9evXERYWJncUIiLSc5cvX0ZERAQv/2oghdDRrqLXr1/j8ePHuHLlCjw9PfHzzz9jxIgRH/0+R0dHDBgwAFOmTMn0WkpKClJSUtKfx8XFwd7eHrGxsShRokSB5s+r1NRUlC9fHoMGDcLChQvljkNERHps/Pjx2LRpE548eQIjI80ZdxoXFwcLCwuNOn+rm872ABYrVgw1a9ZEnz59MG7cOHh7e+fo++rUqYPHjx9n+ZqJiQlKlCiR4aFpjIyM0K9fP/j7+0OpVModh4iI9JRSqYS/vz/69eunUcUfSXSuADxx4gRq1aoFlUqVvs3AwADGxsaZ2q5YsQJdu3bNsO327dsoX758oecsTG5ubnjy5AmCg4PljkJERHrq1KlTePr0KS//aiidKwDr16+P6OhojBkzBhERETh69CiWLVuGHj16AACSkpLS23bo0AHHjx/HihUrcOPGDcyfPx/h4eHo37+/TOkLRvPmzVGlShX4+fnJHYWIiPSUn58fqlatimbNmskdhbKgcwWgpaUlDh8+jL///htNmjTB8OHDMWzYMEyYMAEPHjyAvb09Hj16BACoUaMGAgMDsW7dOjRq1Ai+vr7YtWsXqlWrJvNe5I9CoYCbmxt27NiR4Z5FIiIidUhOTsaOHTvg5uYGhUIhdxzKgs4OAlEHTb6J9Pr166hduzYCAgLQs2dPueMQEZEeCQgIQK9evXD9+nXUqlVL7jiZaPL5W110rgeQJA4ODmjYsCEvAxMRkdr5+fmhUaNGGln8kYQFoA5zc3PD3r17ERsbK3cUIiLSE7Gxsdi3bx8Hf2g4FoA6bMCAAXjz5g0CAgLkjkJERHpi586dePPmjdYPqNR1LAB1mK2tLdq0acPLwEREpDZ+fn5wdnaGra2t3FHoA1gA6jg3NzecOHECkZGRckchIiId9/TpU5w4cYKXf7UAC0Ad17t3bxgZGWHr1q1yRyEiIh23detWGBsbo1evXnJHoY9gAajjSpYsCRcXF/j6+sodhYiIdJyvry+6dOmCkiVLyh2FPoIFoB5wc3PDxYsXcfPmTbmjEBGRjrpx4wZCQ0N5+VdLsADUA126dEGJEiU4GISIiAqNn58fLCws4OLiIncUygEWgHqgaNGi6NWrF3x9fcGFX4iIqKAJIeDr64tevXqhaNGicsehHGABqCfc3Nxw+/Zt/PXXX3JHISIiHXPhwgXcuXOHl3+1CAtAPeHs7AwbGxteBiYiogLn5+cHGxsbtGnTRu4olEMsAPWEoaEh+vfvjy1btiA1NVXuOEREpCNSU1OxZcsWDBgwAIaGhnLHoRxiAahH3Nzc8OzZM5w4cULuKEREpCOOHz+OqKgoXv7VMiwA9Ujjxo1Ro0YNXgYmIqIC4+fnh5o1a6JRo0ZyR6FcYAGoRxQKBdzd3REQEICkpCS54xARkZZLTExEQEAA3N3doVAo5I5DucACUM+4ubkhPj4ee/fulTsKERFpub179yIhIQEDBgyQOwrlEgtAPVOtWjU0bdqUl4GJiCjf/Pz80KxZM1SrVk3uKJRLLAD1kLu7Ow4cOIDnz5/LHYWIiLRUVFQUDh48CHd3d7mjUB6wANRD7u7uMDAwwB9//CF3FCIi0lJ//PEHDAwMWABqKRaAesjS0hK9e/eGt7c3l4YjIqJcE0LA29sbffr0QenSpeWOQ3nAAlBPeXh44NatWzh16pTcUYiISMucPHkSt2/fhoeHh9xRKI9YAOopJycn1KxZE97e3nJHISIiLePt7Y1atWqhVatWckehPGIBqKcUCgU8PDywc+dOvHjxQu44RESkJZ4/f46AgAB4eHhw7j8txgJQjw0cOBAAsHHjRpmTEBGRtkg7Z6SdQ0g7sQDUY1ZWVujVqxcHgxARUY6kDf7o3bs3LC0t5Y5D+cACUM95eHjgxo0bCAkJkTsKERFpuODgYNy8eZODP3QAC0A917p1a1SvXp2DQYiI6KO8vb1Ro0YNfPbZZ3JHoXxiAajn0gaD7NixAy9fvpQ7DhERaaiXL19ix44dHPyhI1gAEgYNGgSVSoVNmzbJHYWIiDRU2uCPQYMGyZyECoJOFoCPHz9Gjx49ULJkSVSsWBHz58/Ptu2yZctgb28PCwsLdO3aFY8fP1ZjUs1QpkwZuLq6cjAIEZEOUSqBkycBf3/pq1KZ9/dKG/zh6uoKKyurgopIMtK5AlClUqFnz55QKBQ4c+YMVq9ejfnz58PPzy9T2z179mDSpElYsGABgoODoVQq0blzZxlSy8/DwwPXr1/HmTNn5I5CRET5FBAAVKoEODsDbm7S10qVpO15cfr0aURERHDwhw5RCB3r8rlx4wZq1aqFyMhIlCtXDgDw3XffISYmJlMR2L9/f5QqVQqrVq0CADx58gR2dna4evUq6tat+9HPiouLg4WFBWJjY1GiRImC3xk1UqlUqFmzJlq0aMF5AYmI1ECpBEJCgMhIwMYGcHICDA3z/74BAUDv3sD7Z/e02/Z27ABcXXP3nl999RXOnTuHmzdvpt//V1j51UGXzt95pXM9gNWrV0d8fHx68QcAxsbGSExMzNQ2IiICjo6O6c9tbW1haWmJmzdvqiWrJjEwMMDXX3+Nbdu2ITo6Wu44REQ6raB76NIolcD332cu/oD/to0Zk7vLwdHR0di+fXuGwR+FlZ/UR+cKQAMDA5ibm6c/DwsLg5+fX5YzlsfHx8PMzCzDtmLFiiEhISHL905JSUFcXFyGhy4ZPHgwVCoVNm/eLHcUIiKdldZD9/4t50+eSNvzU0QFB2d+33cJATx6JPXc5dSmTZugUqnSB38UZn5SHyO5AxSWXbt2YcCAAUhOTsbgwYPhmkV/tzKLP4EUCgVUKlWW7+nl5YWZM2cWeFZNYW1tjR49esDb2xujRo3iMH8iogL2sR46hULqoeveHXjzBoiOBl6+/PDXd/8dFZWzHF9+CVSrBlhbA2XKZP3V2hooWVIa/NGzZ09YW1vnKr+2XA7WVzpbALZv3x5hYWG4cuUKPD09sWbNGowYMSJDGwMDg0zFnhACRkZZ/1gmT56MH374If15XFwc7O3tCz68jDw8PNC+fXv8+eefaNmypdxxiIh0SkhIznrozMykAvB9CgVQqhRQujRgaSl9rVABaNBAev7yJbBs2cdzNG8OmJhIBeONG8Dz59IjNTVjO0NDQKk8jsREc7RtK+XLaQ9jmzYfz0Hy0dkCsFixYqhZsyZq1qyJu3fvwtvbO1MBaG5unul+t+jo6GxvCDUxMYGJiUmhZdYEn3/+OapUqQJvb28WgESk9wpqoMPz58CffwJr1+asfb9+QIcOGQs9S0vAwuLDn69USpdgnzzJupdOoQDs7ICtWzO/jxBATIxUFD5/Ln1dsOAP3Lz5Ci4uY/DiBXD1as7yP3mSs3YkH527B/DEiROoVatWhp49AwMDGBsbZ2rr4OCA0NDQ9Od37txBQkICHBwc1JJVE6UNBtm6dStevXoldxwiItnkdaCDUikVSmvWAIMGATVqSJdTu3cHTp/O2WcPHSpdpu3cGWjWDKheXSoCP1Z8GhoCS5dK/37/Lp6050uWZP0+ab2LNWsCrVoBzs6vEB7+LX788Q1WrFBgyxZg5cqc5R8xQsru5SXtc3Jyzr4vTUHOYUjZEDrmxYsXokyZMmLUqFHi+vXr4siRI8LOzk54eXkJIYRITExMb7t3715RpEgRsX79ehEeHi46deokmjVrluPPio2NFQBEbGxsge+HnCIjI4WRkZFYvny53FGIiGSxc6cQCoUQUr/Yfw+FQnrs3Plf21evhDh0SIjp04Vo316I4sWltoaGQjRuLMSoUUL4+Qlx/74Qb98KYWeX9Xunvb+9vRCpqfnPb2eX8b3t7TPm/phly5YJIyMj8e+//6ZvS039eH5rayFmzhSiY8f/fhZFigjRqpUQkyYJsX+/9DPLTXY7u9xl/xhdPX/nhs4VgEIIcenSJfH5558Lc3NzUaFCBTF9+nSRmpoq7t+/LywtLcXDhw/T2y5fvlzY2toKExMT0bFjxwyvfYwu/wL16tVLODo6CpVKJXcUIiK1Sitysipw0oqc0qWFGDZMiLp1/yuGLC2F6NJFiLlzhTh5UoiEhKzfP624fL+Iyqq4zO9+BAVJxWdQUO6KSpVKJerWrSt69+6dr/xv3wpx6ZIQS5cK0bu3EGXL/te2Xj0hPD2F8PcX4vHjjO+dk8I7P3T5/J1TOjcRtDrp8kSSR44cQceOHfHnn3+iefPmcschIlKbkyely70fU6mSdJ9ey5ZAixbSZdqcTp4QECCNpn13QIW9vXR5NreTNBeGtIGAR44cQfv27TO9ntf8QgB37kiXhUNCpMetW9JrlSpJ9x1mMW0vgP/uX7x3L/8jjHX5/J1TLADzQZd/gVQqFapWrQpnZ2esW7dO7jhERGrj7y/d8/cxfn7AgAF5/xxNXkljyJAhOHXqFG7fvg0Dg6yHCxRU/mfPpILQ3x/YufPj7YOC8j/CWJfP3zmls6OAKX/SBoPMnj0bv/76KywsLOSORERUqJ4/l4qQFSty1t7GJn+fZ2iomVOlxMTEYOvWrZg2bVq2xR9QcPnLlgV69ZKmvclJARgZmf/PJB0cBUwFZ8iQIXjz5g18fX3ljkJEVChSUqS1cbt1A8qXB8aPB+rUkaZcye5yrkIhXe50clJvVnXx9fXF27dvMWTIELV+bk4L6vwW3iRhAUjZsrGxQbdu3bBmzRrwTgEi0hVCSHPyffutVEz06SNdhly6VOpdCgwEvL2ltrmdSkXbCSGwZs0adOvWDeXKlVPrZzs5Sff46WvhrW4sAOmDPDw8cOXKFfz1119yRyEiyiQ388Xdvw/Mni3Nc9eyJbB/v1QEXr8OnD8PfPed1PMHSAMZduwAbG0zvoednbRdEwZqFIYLFy7g6tWr8PDwUPtn52cOQ8o9DgLJB324iVSpVKJq1apo164dfv/9d7njEBGly2okqp2dVESkFWhxcdJ9ZRs3SgVisWJA797AwIHS/WsfuMUNgGYP1CgMw4YNw/Hjx3H37t0P3v9XmNQxQlofzt8fwwIwH/TlF2j27Nnw8vJCZGSkTu8nEWmPgACpkHv/DJbWUzR1qjTdSGCgtApF27ZS0dezJ2Burv682iA2Nhbly5fHlClT8NNPP8mapbALb305f38IC8B80JdfoCdPnqBixYpYsWIFvvnmG7njEJGeUyqlOePe7SHKSs2awODBgLu71INEH7Zq1SqMGjUKDx8+RPny5eWOU6j05fz9ISwA80GffoF69OiBBw8e4NKlS1DkdKZTIqJCkNOJmk+cyFk7kgZ/NGzYEJUrV0ZgYKDccQqdPp2/s8NBIJQjHh4eCAsLQ2hoqNxRiEjP5XQeuH//LdwcuuTixYsIDw+XZfAHyYMFIOVIx44dYW9vD++0uRGIiGTw+jUQHJyztpwvLue8vb1RoUIFdOjQQe4opCYsAClHDA0NMXz4cPj5+SE+Pl7uOESkZxISgAULgMqVAR8faTQv54srGHFxcfD398fw4cNhqMtDnCkDFoCUY0OHDkVSUhL8/f3ljkJEeiI+Hpg3Tyr8pk6VRvHevi1N6wJwvriC4O/vj6SkJAwdOlTuKKRGLAApx+zs7ODi4sLLwERU6OLigDlzpNG+06dLq3Xcvg2sWSNt09eJmguDt7c3unTpAtv3f5ik04zkDkDaxcPDA127dkVoaCgaN24sdxwi0jGxscCyZcCvv0r3+339NfDjj1lP4+LqCnTvrl8TNRe00NBQXLp0CbNmzZI7CqkZC0DKlS+++AJ2dnbw8fFhAUhEBSYmRrpsu2SJNHGzh4dU+H2sU8rQUFrRg/LG29sbdnZ2+OKLL+SOQmrGS8CUK0ZGRhg2bBh8fX2RkJAgdxwi0nAfW6s3Ohr43/+AihWB+fOBIUOAu3elXkBekSxc8fHx8PPz4+APPcUCkHJt6NChSExMxJYtW+SOQkQaLCBAul/P2Rlwc5O+VqokbX/5UhrUUakSsGgRMHw4cO+edOlXxxeh0BhbtmxBYmIiB3/oKa4Ekg/6PJN4ly5dEBUVhQsXLsgdhYg00IfW6hUCKFoUMDAAvvsOGD8eKFtWnpz6rEmTJihXrhz27t0rdxS10+fzdxreA0h54uHhge7du+Py5cto2LCh3HGISIMolcD332cu/oD/thkbAzdvAuXKqTcbSS5duoSLFy9iz549ckchmfASMOVJ586dUb58efj4+MgdhYg0TEgI8Pjxh9vExwMREerJQ5n5+PjA1tYWnTp1kjsKyYQFIOVJ2mCQzZs34/Xr13LHISINktO1enPajgpWQkICfH19MWzYMBgZ8UKgvmIBSHk2bNgwJCQkYOvWrXJHISIN8v5I3+xwrV55bN26FQkJCRg2bJjcUUhGLAApzypWrIgvvviCK4MQEQAgMVEa2Tt06IcnY+ZavfLy9vZGp06dUKFCBbmjkIxYAFK+eHh44Pz58wgPD5c7ChHJRAggMBBwcJCmdJk8Gdi0SSr0uFavZgkLC8OFCxfg4eEhdxSSGQtAyhcXFxfY2NhwMAiRnrp1C+jcWVqWrW5d4O+/gZkzgQEDuFavJvLx8YGNjQ1cXFzkjkIyYwFI+WJsbIyhQ4di06ZNSExMlDsOEalJ2uXeunWl0by7dwP79gFVq/7XxtUVuH8fCAoC/Pykr/fusfiTy+vXr7F582YO/iAALACpAAwbNgzx8fHYtm2b3FGIqJC9f7l30iTgn3+Abt0yX+4F/lurd8AA6Ssv+8pn27ZtiI+P5+APAsACkApA5cqV0aFDBw4GIdJx2V3uNTWVOxnlhLe3Nzp27IhKlSrJHYU0AAtAKhAeHh74888/cfXqVbmjEFEBy8nlXtJsV65cwblz5zj4g9LpZAH46NEjdOvWDaVLl4atrS3GjRuHlJSULNs6OTlBoVBkeGzZskXNibVf165dUbZsWQ4GIdIySiVw8iTg7y99fXcOPyGAXbuA2rVzdrmXNJePjw/KlSuHLl26yB2FNITO3QWqVCrRqVMnODg44NSpU4iMjMTAgQNhbm6OmTNnZmr/7NkzrFu3Du3bt0/fZmlpqc7IOiFtMMiqVaswb948mJmZyR2JiD4iIEBas/fdZdvs7IClSwFHR2D0aODQIemy77FjQLVq8mWlvEtMTMSmTZvg6ekJY2NjueOQhtC5HsCzZ8/i5s2bWLduHRwdHdGhQweMHj0a+/bty7J9VFQUHBwcYGdnl/4w5Q0teTJ8+HDExMRgx44dckchoo8ICAB69868Zu+TJ0CvXlKv3/Xr/13uZfGnvbZv347Y2FgMHz5c7iikQXSuAKxUqRICAwNRvHjx9G1FixbNcsh7SkoKYmNjUbZsWXVG1FlVqlRB+/btORiESMMplVLPnxCZX0vbZmYGXL3Ky726wNvbGx06dEDlypXljkIaROcKQHt7+wwTXKpUKmzatAk9e/bM1DYqKgqA1HNVtmxZNG3aFMePH8/2vVNSUhAXF5fhQRl5eHjgzJkz+Pvvv+WOQkTZCAnJ3PP3vrg4IDRUPXmo8Fy7dg1nz57l4A/KROcKwPf9/PPPiImJwejRozO9ZmhoiA4dOmDo0KE4cuQInJyc4OLiggcPHmT5Xl5eXrCwsEh/2NvbF3Z8rdOtWzdYW1uzF5BIg0VGFmw70lze3t4oW7YsunXrJncU0jAKIbK6CKAb9u7di/79++PkyZNo0qRJjr7H0dERAwYMwJQpUzK9lpKSkmE0cVxcHOzt7REbG4sSJUoUWG5t99NPP2HZsmV49OgRSpYsKXccInrPyZOAs/PH2wUFSZM3k3aKiYmBvb09vv/+e8yePVvuOBolLi4OFhYWen3+1tkewCtXrsDd3R0+Pj45Lv4AoE6dOniczbURExMTlChRIsODMhs5ciTevHnDXkAiDSQE8PDhh+/rUygAe3vAyUl9uajgrVmzBm/evMHIkSPljkIaSCcLwGfPnqFr164YO3Ys3Nzcsm23YsUKdO3aNcO227dvo3z58oUdUafZ2Njgq6++wtKlS/HmzRu54xDR/3v2TFrFY9AgoFUrqdB7vxBMe75kCZdt02YpKSlYunQpBg4ciHLlyskdhzSQzhWAKSkp6NGjB2rUqIHhw4fj8ePH6Y+UlBQkJSWlt+3QoQOOHz+OFStW4MaNG5g/fz7Cw8PRv39/GfdAN4wbNw5Pnz6Fv7+/3FGICMCOHdJKHmfOADt3AsHB0jZb24zt7Oyk7a6u8uSkguHv74/IyEiMGzdO7iikoXTuHsBTp06hTTY3rWzYsAHjxo3D5cuX0wdwHD58GJMnT8aNGzdQtWpVeHl5ZRhF/CG8h+DDunbtivv37+PKlStQcB4JIllERwMjR0orfbi6AqtWAdbW/72uVEqjgiMjARsb6bIve/60mxACjo6OqFKlCvbs2SN3HI3E87cOFoDqxF+gDwsODkbr1q1x4MABdOrUSe44RHpn/37g66+BpCRgxQrAzY1z+umDAwcOwMXFBcHBwXDijZxZ4vmbBWC+8Bfow4QQaNasGYoXL/7B+RWJqGDFxQE//ACsXQt06gT4+GS+1Eu66/PPP8fr169x7tw5Xn3JBs/fOngPIGkOhUKBCRMm4MSJE7h06ZLccYj0wokT0jq+W7dKhd/+/Sz+9EloaCiCgoIwYcIEFn/0QSwAqVD17NkTlStXxqJFi+SOQqTTXr8GRo0C2rYFqlaVlnEbPpyXfPXNokWLUKVKlSxXvyJ6FwtAKlRGRkb44YcfsG3btmxXWCGi/Dl7FmjQQLrku2wZcOwYUKmS3KlI3e7fv4/t27fjhx9+gCFH8tBHsACkQjdkyBBYWFhgyZIlckch0kpKpbR6h7+/9FWplLYnJwMTJ0pz+llZAWFhUi+gAf/PrpeWLFkCCwsLDB48WO4opAX4vwkqdMWKFcN3330HHx8fvHr1Su44RFolIEDqzXN2lkbxOjtLzxcuBBo3BpYuBebNA06fBmrUkDstyeXVq1f4/fff4enpiWLFiskdh7QAC0BSi5EjRyI1NRVr1qyROwqR1ggIAHr3Bt5fnfLxY6nnLykJCA2V/s0rfvpt9erVSE1N5bJvlGMsAEktypYti4EDB2Lp0qVISUmROw6RxlMqge+/l9buzc7bt4CDg/oykWZKSUnBsmXLMGjQIFi/O8s30QewACS1GTduHP7991/4+vrKHYVI44WEZO75e9/jx1I70m+bN2/Gs2fP8MMPP8gdhbQIC0BSm5o1a6Jbt25YtGgRVCqV3HGINFpkZMG2I92kUqmwePFidOvWDTVr1pQ7DmkRFoCkVhMmTMD169dx8OBBuaMQaTQbm4JtR7rpwIEDuH79OiZMmCB3FNIyXAouH7iUTO4JIdCiRQuYmpoiKChI7jhEGik5GRg/Hli5Mvs2CgVgZwfcu8cBIPqsTZs2SElJwdmzZ7nyRy7w/M0eQFKztOXhTp48iYsXL8odh0jjXL8ONGsG/P77fyt5vH9eT3u+ZAmLP332119/4dSpU1z2jfKEBSCpXY8ePVC1alUuD0f0DiGklTw++UQa3XvhgrSW744dmdfytbOTtru6ypOVNMOiRYtQrVo1dO/eXe4opIVYAJLaGRoa4ocffsD27dtx7949ueMQyS4mBujfX+rxc3cH/voLqFdPes3VFbh/HwgKAvz8pK/37rH403d3797Fjh07uOwb5RnvAcwH3kOQd4mJiahQoQLc3d2xdOlSueMQyebsWWmFj5gYqcevTx+5E5E2GD16NPz9/fHgwQOYmZnJHUfr8PzNHkCSiZmZGTw9PfH7778jOjpa7jhEaqdUAnPmAJ99Jl3iDQ9n8Uc58/LlS6xduxaenp4s/ijPWACSbDw9PaFSqbBq1Sq5oxCp1ZMnQPv2wLRpwOTJwKlTQMWKcqcibbFq1SqoVCp4enrKHYW0GAtAko21tTUGDRqE5cuXIzk5We44RGqxdy9Qvz5w4wZw/Djw88+AkZHcqUhbJCcnY/ny5Rg8eDDKlCkjdxzSYiwASVY//PADoqKisHnzZrmjEBWq5GRg9GigWzegZUvpkq+zs9ypSNts2rQJz58/57JvlG8cBJIPvIm0YPTs2RMRERH4+++/YWDAv0lI90RESKN8IyKARYsAT8/Mc/sRfYxKpULt2rVRu3ZtBAQEyB1Hq/H8zR5A0gATJkxAREQE9u/fL3cUogKVNrdf48ZASgpw/jwwciSLP8qbffv24caNG1z2jQoEewDzgX9BFJyWLVvC2NgYp06dkjsKUa4plUBICBAZKa3N6+QExMcD33wDbN0qze+3ZAlQrJjcSUmbffbZZ1AqlThz5ozcUbQez98Abz0mjTBhwgS4urriwoULaNq0qdxxiHIsIAD4/nvg8eP/tllbS71/b95IBWDfvvLlI91w/vx5hISEIDAwUO4opCPYA5gP/Aui4CiVSjg4OKBBgwbYtm2b3HGIciQgAOjdWyr2srJqldQLSJRfffr0QXh4OCIiInivdAHg+Zv3AJKGSFsebufOnbh7967ccYg+SqmUev6yK/4UCmDuXKkdUX7cuXMHAQEBGDduHIs/KjD8TSKNMWjQIJQuXRq//PKL3FGIPiokJONl3/cJATx6JLUjyo9ffvkFlpaWGDhwoNxRSIewACSNYWpqipEjR2LdunV4+fKl3HGIPigysmDbEWXlxYsXWL9+PUaOHAlTU1O545AOYQFIGsXT0xNCCPz2229yRyH6oJxO5WJjU7g5SLel/b/wu+++kzkJ6RoWgKRRrKysMGTIEC4PRxpt927g228BQ8Ps2ygUgL29NCUMUV4kJSVhxYoVGDJkCKysrOSOQzpGJwvAR48eoVu3bihdujRsbW0xbtw4pKSkZNl22bJlsLe3h4WFBbp27YrHH7qph9Tihx9+wIsXL7Bx40a5oxBl8OYNMGYM0KMH0KYNsG6dVOi93xuY9nzJkg8XiUQfsnHjRrx48YLLvlGh0LkCUKlUolOnTjAxMcGpU6ewfv16+Pr6Yu7cuZna7tmzB5MmTcKCBQsQHBwMpVKJzp07y5Ca3lWtWjX07NkTixcvhkqlkjsOEQDg7l3g00+lqV2WLZOmgBk4ENixA7C1zdjWzk7a7uoqT1bSfiqVCosXL4arqyuqVq0qdxzSQTo3D2BISAjatm2Lly9fonjx4gCAuXPnYufOnQgNDc3Qtn///ihVqhRWrVoFAHjy5Ans7Oxw9epV1K1b96OfxXmECs+5c+fQokUL7Nq1C927d5c7Dum5HTuAYcMAKytg2zZpabd3ZbUSCHv+KD927dqFnj174ty5c2jWrJnccXQOz98a1AN46NAhpKam5vt9KlWqhMDAwPTiDwCKFi0KI6PMi55ERETA0dEx/bmtrS0sLS1x8+bNfOeg/GnevDk+/fRTLFq0SO4opMeSk4HvvgP69AG++AK4dClz8QdIxV6bNsCAAdJXFn+UX4sWLUKrVq1Y/FGh0Zil4Lp3745ixYqha9eu6N27Nzp06AATE5Ncv4+9vT3s7e3Tn6tUKmzatAn9+vXL1DY+Ph5mZmYZthUrVgwJCQlZvndKSkqGewnj4uJynY9ybsKECejRowfOnTuH5s2byx2H9MzNm9ISbhERwOrVgIdHzkf+EuXHn3/+iTNnzmD37t1yRyEdpjE9gC9evIC3tzeMjIwwYsQIlClTBv3798eOHTuQmJiY5/f9+eefERMTg9GjR2d6TZnFFP0KhSLb+868vLxgYWGR/ni30KSC17VrV9SoUQMLFy6UOwrpGT8/qacvKQk4fx4YMYLFH6nPwoULUbNmTXTp0kXuKKTDNKYALF68OHr37o21a9fi6dOnOHToEB4+fIh+/fqhTJky6NmzJ/bv35+r99y7dy8WLFiAbdu2ZerpAwADA4NMxZ4QIsvLxQAwefJkxMbGpj8ePXqUqzyUOwYGBhg3bhwCAwNx+/ZtueOQHkhMBIYPB9zdpZG+oaFA/fpypyJ9cuvWLezatYvLvlGh06jfrri4OPj7+6Nfv37o1KkTbt++ja+//hqBgYFo3bo1RowYgXHjxuXova5cuQJ3d3f4+PigSZMmWbYxNzdHdHR0hm3R0dHZ3hBqYmKCEiVKZHhQ4Ro4cCDKlCnD5eGo0P3zD9C0qdT7t24dsHEjYG4udyrSN7/88gvKlCmDr776Su4opOM0pgDs0KEDrK2tMXLkSBQvXhw7duxAZGQkVq9ejQ4dOmDMmDFYt24d1qxZ89H3evbsGbp27YqxY8fCzc0t23YODg4ZRgbfuXMHCQkJcHBwKJB9ovwrWrQoRo4cifXr1+P58+dyxyEdJASwfj3wySfS87/+AoYM4SVfUr/nz59jw4YNGDVqFIoWLSp3HNJxGlMAli9fHoGBgXj27Bl+//13tG/fHobvDaVr2rQp1q5d+8H3SUlJQY8ePVCjRg0MHz4cjx8/Tn+kpKQgKSkpve1XX32FgIAAbNiwAVeuXMGoUaPQrFkzVK9evVD2kfLmu+++g0Kh4PJwlGdKJXDyJODvL31Nu/03IQEYNAgYOhRwcwMuXADq1JEzKemzlStXwsDAAN9++63cUUgfCB1z8uRJASDLx4YNG4SlpaV4+PBhevvly5cLW1tbYWJiIjp27JjhtY+JjY0VAERsbGxh7Aq9w9PTU1hZWYnExES5o5CW2blTCDs7IaS+PulhZyfE4sVC1KwpRLFiQmzeLHdK0nevX78WVlZWYuTIkXJH0Qs8fwuhcxNBqxMnklSfO3fuoEaNGli5ciW++eYbueOQlggIAHr3lsq+rFSsCBw5AtSood5cRO9btWoVRo4ciVu3bqFKlSpyx9F5PH/r4Eog6sRfIPXq06cPwsLCEBERken2AKL3KZVApUrAh5b3trMD7t/nxM0kL6VSiZo1a6JRo0bYtm2b3HH0As/fGnQPINHHTJgwAbdv38aePXvkjkJaICTkw8UfIL0eEqKePETZ2b17N+7cuYMJEybIHYX0CAtA0hpNmzbFZ599xomhKUciIwu2HVFhEEJg4cKFaN26dbZTlhEVBhaApFXGjx+fvkwS0YfY2BRsO6LCcObMGZw7dw7jx4+XOwrpGd4DmA+8h0D9VCoV6tevj7Jly+LYsWNyxyENdugQ4OICZLOyIxQK6R7Ae/d4DyDJQwiBtm3b4vnz5wgPD+fKH2rE8zd7AEnLGBgYYM6cOTh+/DgLQMrSmzfAjz8CnToBjo5Soff+pM5pz5csYfFH8jl27BiCgoIwd+5cFn+kduwBzAf+BSEPIQQ+/fRTvHnzBn/99RcUXLKB/t+dO8CAAcDly4CXF/DDD8CuXcD332ccEGJvLxV/rq5yJSV9p1Kp0LRpU5iYmOD06dP8/5ia8fwNGMkdgCi3FAoF5s2bh9atW2Pnzp3o3bu33JFIA/j6At9+C1hbA2fPAmn307u6At27S6N9IyOle/6cnNjzR/LauXMnQkNDERwczOKPZMEewHzgXxDy6ty5M+7cuYO///4bRkb8W0ZfxccDI0cCGzcCX34J/PYbULy43KmIsvf27VvUqVMH1atXx/79++WOo5d4/uY9gKTF5s6di5s3b2LDhg1yRyGZhIYCjRtLK35s3Ahs2sTijzTfhg0bcOvWLcydO1fuKKTHWACS1mrQoAEGDBiAGTNmICkpSe44pEYqFfDLL0CLFkCJEsClS8BXX8mdiujjkpKSMGPGDLi5uaF+/fpyxyE9xgKQtNqsWbPw7NkzrFy5Uu4opCbPnknTu4wbJw3uOHsWqF5d7lREObNixQpERUVh1qxZckchPccCkLRatWrV8PXXX2Pu3LmIiYmROw4VsqNHgfr1pR6/Q4eAhQuBIkXkTkWUMzExMfDy8oKHhweqVq0qdxzScywASetNmzYNycnJWLRokdxRqJCkze3XoYNUAIaHAx07yp2KKHcWLlyIlJQUTJ06Ve4oRCwASfvZ2NhgzJgx+PXXX/Hvv//KHYfyQKkETp4E/P2lr0rlf6/duQO0aiXd87dwIXDwIFCunFxJifImMjISS5YswZgxY2DD9QdJA7AAJJ0wceJEmJiYYPbs2XJHoVwKCAAqVQKcnQE3N+lrpUrSdl9foGFDIDpautdv/HiACyaQNpo9ezZMTEwwYcIEuaMQAWABSDqiZMmSmDRpEtasWYO7d+/KHYdyKCAA6N074yodAPDkCdCrlzSvX/fu0soeaRM7E2mbO3fuwNvbG5MnT0bJkiXljkMEgBNB5wsnktQsiYmJqF69OpydnbF582a549BHKJVST9/7xd+7SpcGoqK4agdpN3d3d5w8eRK3b9+Gqamp3HEIPH8D7AEkHWJmZobp06fDz88P4eHhcsehjwgJ+XDxB0iXfkNC1JOHqDCEhYXBz88PM2bMYPFHGoUFIOmUIUOGoFq1avjpp5/kjkIfERlZsO2INNFPP/2EGjVqYMiQIXJHIcqABSDpFGNjY8yePRv79+9HCLuONFpOB0JywCRpq+DgYBw4cACzZ8/meuWkcXgPYD7wHgLNpFKp0KRJE5iamiIkJAQKhULuSJSFR4+AGjWA5OSsX1coADs74N493gNI2kcIgVatWiElJQUXLlyAAYevaxSev9kDSDrIwMAAXl5eOHPmDPbv3y93HHqPEICfnzShc9Gi0rb3a/S050uWsPgj7bRv3z6cPXsWXl5eLP5II/G3knRS+/bt4ezsjMmTJ0P57qzCJKvnz4E+fQB3d2klj9u3gZ07AVvbjO3s7IAdOwBXV3lyEuWHUqnElClT8Pnnn6Ndu3ZyxyHKEm9KIJ2kUCjg5eWF5s2bw9/fH19++aXckfTerl2AhwegUgHbtkmFICAVed27S6N9IyOle/6cnNjzR9rLz88P165dw/nz53kLCmks3gOYD7yHQPO5urri8uXLuHHjBooUKSJ3HL306hXw/ffApk1At26AtzdQtqzcqYgKR0pKCmrVqoVGjRph586dcsehbPD8zUvApONmz56Nhw8fwtvbW+4oeunwYcDREdizB/jjD6kXkMUf6TJvb288fPiQy1KSxmMBSDqtdu3aGDRoEH7++WckJCTIHUdvxMcDI0YAX3wB1KkDXLsGDByYebAHkS6Jj4/Hzz//jMGDB8PBwUHuOEQfxAKQdN6MGTMQExODJUuWyB1FL5w6BdSrB/j6AqtXA4cOSYM6iHTdkiVLEBcXh+nTp8sdheijWACSzqtQoQI8PT2xcOFCvHjxQu44OisxERgzBmjTBqhQAbhyReoFZK8f6YMXL15g4cKF8PT0RIUKFeSOQ/RROlkARkZGYubMmWjZsuUH2zk5OUGhUGR4bNmyRU0pSZ0mT54MIQTmzZsndxSddO4c0LAhsGYN8OuvQFAQUKWK3KmI1MfLywuA9P8aIm2gcwXgiBEjULFiRfz22294+vTpB9s+e/YM69atw6NHj9If3bt3V1NSUqcyZcpg/PjxWLFiBR49eiR3HK2kVAInTwL+/tJXpRJISQGmTAE+/RQoWRK4fFnqBeS8t6RPHj58iJUrV2LChAmwsrKSOw5Rjujc/6ZtbGxw4cIFzJ8//6Nto6Ki4ODgADs7u/SHqampGlKSHMaOHYsSJUpg5syZckfROgEBQKVKgLMz4OYmfS1fXlrKbdEi4OefgTNngFq15E5KpH4zZ85EiRIlMHbsWLmjEOWYzhWAM2bMQIMGDT7aLiUlBbGxsSjLOSn0RvHixTF16lSsX78eERERcsfRGgEBQO/ewOPHGbdHRQEPHwLz5km9gFzrnvTR9evXsWHDBkybNg3m5uZyxyHKMZ0rAHMqKioKADB8+HCULVsWTZs2xfHjxz/4PSkpKYiLi8vwIO0yYsQI2NvbY+rUqXJH0QpKpTSJc3bTxSsU0nq9XG2P9NXUqVNRoUIFeHh4yB2FKFf0tgA0NDREhw4dMHToUBw5cgROTk5wcXHBgwcPsv0eLy8vWFhYpD/s7e3VmJgKgomJCWbNmoWdO3fir7/+kjuOxgsJydzz9y4hgEePpHZE+ubChQsICAjArFmzYGJiInccolzR2aXgNmzYgBkzZuD+/fs5/h5HR0cMGDAAU6ZMyfL1lJQUpKSkpD+Pi4uDvb29Xi8lo42USiXq16+PcuXK4dixY3LH0Wh+foC7e87aDRhQ+HmINIUQAm3btsXz588RFhYGQy5erVW4FBzAu3beUadOHTz+QHeHiYkJ/8rTAYaGhpg7dy66d++OY8eOoV27dnJH0ki3bwNLl+asrY1N4WYh0jTHjh1DUFAQ9uzZw+KPtJLeXgJesWIFunbtmmHb7du3Ub58eZkSkTp17doVLVq0wKRJk6CjneB5lpgITJsmLeH277+ApWX2kzkrFIC9PeDkpN6MRHJSqVSYPHkyWrZsiS5dusgdhyhP9KoATEpKSv93hw4dcPz4caxYsQI3btzA/PnzER4ejv79+8uYkNRFoVBg3rx5CA0Nxc6dO+WOoxGEAHbtAmrXBhYsAH78Ebh+HfD2ll5/vwhMe75kCcAOENInO3fuRGhoKObNmwcFl7ohLaU3BeCDBw9gb2+fPglwjRo1EBgYiHXr1qFRo0bw9fXFrl27UK1aNZmTkrp89tln6NSpE3766SekpqbKHUdWt28DLi5Az55SAfj338CsWYCZGeDqCuzYAdjaZvweOztpu6urPJmJ5PD27Vv89NNP6Ny5M5zY9U1aTGcHgagDbyLVfmFhYWjYsCF8fHwwfPhwueOoXWIi4OUl9fjZ2Ej3/HXrlvUlX6VSGu0bGSm1dXJizx/pHx8fH3h4eCAsLAz169eXOw7lEc/fLADzhb9AusHNzQ3BwcG4deuW3qwEIwSwZ480x19kpHS5d9IkqcePiLKWlJSEatWqoU2bNvD19ZU7DuUDz996dAmYKDuzZs3Cs2fPsHLlSrmjqMXt20CXLkCPHpkv9xJR9lasWIGoqCjMmjVL7ihE+cYCkPRetWrV8PXXX2Pu3LmIiYmRO06hSUwE/vc/aXTv339LAz727wd42yvRx8XExMDLywseHh6oWrWq3HGI8o0FIBGAadOmITk5GYsWLZI7Sp4plcDJk4C/v/Q1bXk2IYDdu6XevvnzgYkTgX/+Abp3z356FyLKaOHChUhJSeEykqQzWAASAbCxscGYMWPw66+/4t9//5U7Tq4FBACVKgHOzoCbm/S1UiVg5cqMl3uvXQN+/pmXe4lyIzIyEkuWLMGYMWNgw1nPSUdwEEg+8CZS3RITE4MqVarAzc0NK1askDtOjgUEAL17Sz19WSlTRprLjz1+RHnj6ekJf39/3L17FyVLlpQ7DhUAnr/ZA0iUrmTJkpg0aRLWrFmDGzduyB0nR5RKaSTvh/6MMzEBunZl8UeUFxEREfD29sbkyZNZ/JFOYQ9gPvAvCN2TlJSEevXqoXz58ggKCoKBgWb/jXTypHS592OCgoA2bQo7DZFuUalUaNOmDSIjI3HlyhW9mSZKH/D8zR5AogxMTU2xZs0aBAcHY+3atXLH+ajIyIJtR0T/+f333xESEgJvb28Wf6RzWAASvefzzz/HkCFDMGHCBERqcOUUHAwsXJiztrxvnSh3IiMjMXHiRAwdOhTOOelmJ9IyLACJsrBo0SKYmJhg9OjRckfJJO2yb+vW0j2AlpbZ39+nUAD29tKybUSUc6NGjYKJiQkW5vSvLCItwwKQKAulS5fG0qVLsWPHDuzevVvuOBACOH5cKvqcnYHYWGki57AwaYQvkLkITHu+ZAnX7CXKjV27dmHnzp1YtmwZSpcuLXccokLBApAoG/369YOLiws8PT0RFxcnSwYhgKNHpR68du2k1Tz27AFCQ/+b1sXVFdixA7C1zfi9dnbSdldXWaITaaXY2Fh4enqiS5cu6Nu3r9xxiAoNC0CibCgUCvz222+IjY3F5MmT1frZQgCHDwOffgp06AC8fSst23bhQtZTuri6AvfvS6N9/fykr/fusfgjyq3JkycjLi4Ov/32GxScO4l0GAtAog+oUKEC5syZg1WrVuHs2bOF/nlCAAcOAC1aAF98IT0/eBA4dw7o3PnDc/kZGkpTvQwYIH3lZV+i3Dlz5gxWrVqFuXPnwt7eXu44RIWK8wDmA+cR0g9KpRKffvop4uPjcenSJZiYmOTxfYCQEGlKFhsb6bJuWpEmhNTDN2sW8NdfQMuWwPTpQPv2nMCZSB1SUlLQsGFDlChRAmfOnIEh/4LSaTx/sweQ6KMMDQ3h4+ODmzdvYv78+Xl6j+zW6t25E9i9G/jkE+nSbtGiwLFjwOnT0qVfFn9E6jFv3jzcunULPj4+LP5IL7AAJMoBR0dHTJw4EXPmzMH169dz9b1pa/U+fpxx++PH0vYePYDixYETJ4BTp4C2bVn4EanTP//8gzlz5uDHH3+Eo6Oj3HGI1IKXgPOBXcj6JTk5GfXr10eZMmUQHByco2XilEqpp+/94u9d1tbA06e8Z49IDiqVCk5OTnjx4gXCw8NRtGhRuSORGvD8zR5AohwrWrQovL29cebMGXinTb73ESEhHy7+ACAqSmpHROq3Zs0anD17Fj4+Piz+SK+wACTKhdatW2P48OH48ccf8eTJkw+2jY4GNm7M2ftq8IpzRDrryZMn+PHHH/H111/js88+kzsOkVqxACTKpQULFsDU1BSjRo3K9NqbN9JEzb16SSN9//gjZ+/JtXqJ1EsIAU9PTxQrVgwLFiyQOw6R2rEAJMqlUqVKYfny5QgMDERAQACEkFbmGD1aWo2je3fg7l1g/nzg0SNpRQ6u1UukWQICArB7924sX74cJUuWlDsOkdpxEEg+FNZNpB+aL44KT25+7kIIdOgwFOfPV4Ot7SRERBiiXDngyy+Br74C6tX7r23aKGDp+/7bnlYUcrk2IvWKiYmBg4MDmjZtil27dnHFDz3EQSCAkdwBKKOAAOD77zMOHLCzA5YuZZFQmHL6c3/9GggMBDZuVOD48XUQIhmpqaE4eLAp2rUDjLL4Lyptrd6s3n/JEh5XInX78ccf8fr1a6xcuZLFH+kt9gDmQ0H/BZHWU/T+EWFPUeH62M992zbA0lIa0LFjB5CQAHz2GTBwIPDqlQ8mTPBAcHAwnD5yHZc9u0TyCw4ORuvWrbFy5Up89913cschmbAHkAVgvhTkL9DH5otTKKQeo3v3WDQUpJzM02doKLWrWlUq+r76CqhcWXpNpVKhVatWePXqFS5fvsxpJIg0WHJyMho0aABLS0uEhITkaC5P0k0sADkIRGN8bL44IaQBBZwvrmDlZJ4+pRJYvhy4dQv43//+K/4AwMDAAD4+Prhz5w7mzp1buGGJKF/mzJmDu3fvwsfHh8Uf6T3+F6AhcjoP3K+/AgcOADExefscpRI4eRLw95e+KpV5ex9dkJAgrbubE5aW2Y/krVOnDiZNmoR58+bh77//LriARFRgrl27hnnz5mHy5MmoXbu23HGIZMdLwPlQkF3IJ08Czs4fb1eqFPDqlVSMODpK95G1aiV9tbX98PfqwgCTvN5HJwRw/z5w9izw55/S1/BwQKXK2ecGBQFt2mT/ekpKCho0aIBSpUrh9OnT7F0g0iBKpRKtWrVCTEwMwsLCYGJiInckkhkvAetoD2BkZCRmzpyJli1bfrDdsmXLYG9vDwsLC3Tt2hWPP3YtsBA5OeVsvrioKOlS5Nq1wCefAEeOAAMGSN9bpYp0j5qPD3D9esZBDWkDHd7fxSdPpO0BAQWzH4XZwxgQIN2v5+wMuLlJXytVyjp7crJU5C1aJBW35ctLP58vvwSOHgXq1wdWrQLCwgpmnj4TExP4+Pjgzz//xKpVq/K5p0RUkFatWoVz587Bx8eHxR9RGqFjPDw8hLGxsbC2thYVK1bMtt3u3buFqamp8PPzE2FhYaJTp07C0dExV58VGxsrAIjY2Nh8ppbs3CmEQiE9pPJNeqRt27kz6+/7918hduwQ4vvvhWjcWAgDA+n7rKyE6NFDiAULhLC2zvie77+/vb0Qqan5z29nl/G97eyyz53b937/5/Luz8bHR4jt24X44QchmjcXokgR6XUzMyFatxZi8mQh9u4V4vnz7N87tz/3rIwYMUIUL15cPHz4MP87TUT59vDhQ2Fubi6++eYbuaOQBino87c20rkCcPr06eLy5cti/fr1HywA+/Xrl+F/CI8fPxYAxNWrV3P8WYXxC5RVEWVvn7siJC5OiCNHhJg2TQhn5/+KoY89goLyl/tDBVp+isDU1Mw/k+weFSsKMWCAEMuXC3HxohBv3uQ8f35/7kIIERMTI2xsbETXrl2FSqXK9b4SUcFRqVSiS5cuonz58iImJkbuOKRBWAAKobP3AG7YsAEzZszA/fv3s3y9QYMG8PDwyDAPlJWVFby9veGawxvitGUlkE2bpEvDH2NtLV0mtbYGypTJ/muZMkCRIhnz5mUKGyGAuDjg5UsgOvq/r+/+++VL6ZL3+fMfz799+38rbuRFQf3cAwIC0KtXL2zbtg19+vTJeyAiypdt27ahX79+CAgIQM+ePeWOQxqE9wDq8Uog8fHxMDMzy7CtWLFiSEhIyPZ7UlJSkJKSkv48Li6uULIZGn54wEFu2dvnrN3nnwOmptJ9hlevSl+jooDExMxtLSz+KwgVipxNYdOqFWBgkLHQy+oeQWNjadRt6dLS19TUnOV/+zZn7bJTUD93V1dX9OjRA6NGjUK7du1QqlSp/L8pEeXKq1evMHr0aPTs2ZPFH1EW9LYAVGZReSgUCqg+MCzUy8sLM2fOLMxYhSJtgMmTJ5lXuwD+66HbvDnrHq/Xr4Hnz6VHVNR/X9P+HRaWsxxv3kgjl5s3/6+4K106478tLYFixTIOysjpCGkbm5zlUIcVK1agdu3amDhxInx8fOSOQ6R3JkyYgKSkJKxYsULuKEQaSW8LQAMDg0zFnhACRlkt5vr/Jk+ejB9++CH9eVxcHOxz2r0mI0NDaaqX3r2lwurdIjCt0FqyJPvLncWKSY9KlbJ+PacF2uLFeethy2kB+7GRuupka2uL+fPn49tvv4W7uzvaFGSXLhF9UFBQENauXYvVq1ejfPnycsch0kg6OQ1MTpibmyM6OjrDtujo6A/eC2BiYoISJUpkeGgLV1dpHdv35wq0s8v/GsM5ncImrwVaWgGb9l7vvzfw4QJWLh4eHmjVqhU8PDyQlJQkdxwivZCUlAQPDw84OTnh66+/ljsOkcbS2wLQwcEBoaGh6c/v3LmDhIQEODg4yJiqcLm6SpMhBwUBfn7S13v38j8JtDoKtMIsYAuLgYEBvL298eDBA8yePVvuOER64eeff8bDhw/h7e3NCdmJPkCv/ut4txfmq6++QkBAADZs2IArV65g1KhRaNasGapXry5jwsKXNtBhwADpa0H1mqmjQCusArYwOTg4YMqUKViwYAGuXLkidxwinXblyhUsXLgQP/30E2rVqiV3HCKNpjfTwDx48ACNGzfG5cuX0+/bW7FiBebNm4cXL16gTZs28PHxydU9fRxGnllBT2GjC1JSUtCoUSOYm5vj7NmzMNT3HwhRIVAqlWjRogUSExNx6dIlFHl3riqi9/D8rcMFoDrwF4hy6uzZs2jVqhWWLFmC0aNHyx2HSOcsXboUY8eOxZkzZ9CiRQu545CG4/lbzy4BE8mlZcuW+PbbbzFlyhQ8fPhQ7jhEOuXBgwf46aef8N1337H4I8oh9gDmA/+CoNyIi4tD7dq14ejoiP379/MGdaICoFKp0LlzZ1y7dg3//PMP/19MOcLzN3sAidSmRIkS8PHxwaFDhzB37ly54xDphDlz5uDw4cPw8fHR2xM5UV6wACRSo06dOmHGjBn43//+h/3798sdh0ir7du3D9OnT8fMmTPRqVMnueMQaRVeAs4HdiFTXqhUKvTo0QPBwcH466+/dH7qIaLCcPPmTTRp0gRt2rRBYGAgb6mgXOH5mwVgvvAXiPIqNjYWTZs2hZGREc6dO4fixYvLHYlIa8THx6N58+ZQKpU4f/48LCws5I5EWobnb14CJpKFhYUFdu3ahYcPH2LIkCHg32FEOSOEwODBg/Ho0SPs2rWLxR9RHrEAJJKJg4MDNm7ciJ07d2L+/PlyxyHSCvPmzUNAQAA2btzI1T6I8oEFIJGMevbsialTp2LKlCk4dOiQ3HGINNqhQ4fw008/Ydq0aejRo4fccYi0Gu8BzAfeQ0AFQalUolu3bjh79iwuXryIqlWryh2JSOPcuXMHn3zyCVq2bIm9e/dy0AflC8/fLADzhb9AVFBiYmLQpEkTmJqa4s8//0SxYsXkjkSkMRISEtCiRQskJyfjr7/+QsmSJeWORFqO529eAibSCCVLlkRgYCDu3r2LYcOGcVAI0f8TQmDYsGG4d+8edu3axeKPqICwACTSEHXr1sWGDRuwdetWLF68WO44RBph0aJF2LZtG/744w/UqVNH7jhEOoMFIJEG6d27NyZNmoQff/wRx44dkzsOkayOHj2KSZMmYfLkyejVq5fccYh0Cu8BzAfeQ0CFQalUonPnzrh48SIuXryIypUryx2JSO3u3buHTz75BE2aNMH+/fthaGgodyTSITx/sweQSOMYGhrC398fFhYWcHV1RWJiotyRiNQqMTERPXv2RMmSJeHn58fij6gQsAAk0kClS5fGrl27cPPmTXh4eHBQCOkNIQS+/vpr3Lp1C4GBgShdurTckYh0EgtAIg1Vr149rF27Fr6+vli6dKnccYjUYsmSJfDz88O6detQr149ueMQ6SwjuQMQUfb69++P0NBQjB8/HvXr14ezs7PckYgKTVBQECZMmIAJEyagX79+csch0mkcBJIPvImU1CE1NRVffPEFrly5gosXL6JChQpyRyIqcA8fPkTjxo3RoEEDHDx4EEZG7J+gwsPzNy8BE2k8IyMjbNmyBWZmZnB1dUVSUpLckYgKVFJSElxdXWFubo4tW7aw+CNSAxaARFrAysoKgYGB+Pvvv/Htt99yUAjpDCEEvvnmG/zzzz8IDAyEpaWl3JGI9AILQCIt0bBhQ/j4+OCPP/7Ab7/9JnccogKxcuVKbNy4Eb///jsaNGggdxwivcF+diIt8uWXXyI0NBRjxoxBvXr14OTkJHckojwLDg7G2LFjMXbsWLi5uckdh0ivcBBIPvAmUpLD27dv0aFDB/zzzz8IDQ2FnZ2d3JGIcu3x48do3LgxateujaNHj/K+P1Irnr95CZhI6xgbG2Pr1q0wMTFBr169kJKSInckolxJTk5Gr169YGJigm3btrH4I5IBC0AiLWRtbY2AgACEh4fD09OTg0JIawgh4OnpifDwcAQGBqJMmTJyRyLSSywAibTUJ598gtWrV2Pt2rXw9vaWOw5RjqxZswbr1q3D6tWr0bhxY7njEOkt9rsTabHBgwfj4sWLGDVqFBwdHdGyZUu5IxFl68yZMxg9ejRGjhyJwYMHyx2HSK9xEEg+8CZS0gRv3rxB27Ztcfv2bYSGhqJ8+fJyRyLK5OnTp2jcuDGqV6+O48ePw9jYWO5IpMd4/tbRS8DR0dHo27cvzM3NUbFiRcyaNQsqlSrLtk5OTlAoFBkeW7ZsUXNiorwrUqQItm/fDgMDA/Tu3Rtv3ryROxJRBikpKejduzcMDQ2xfft2Fn9EGkAnLwEPHz4cT548walTpxAZGYnBgwejWLFiGDduXKa2z549w7p169C+ffv0bZyJnrRNuXLlsHPnTrRu3RpDhw7Fhg0bOLKSNEJqaiqGDh2K0NBQBAcHo2zZsnJHIiLoYAGYkJCAPXv24MyZM+k3GI8dOxb+/v5ZFoBRUVFwcHDgXGqk9Zo3b46NGzfC3d0dSUlJ8PPzg4mJidyxSI+lpKRgwIAB2Lt3L3x9fdGsWTO5IxHR/9O5S8C3b9+GUqmEo6Nj+rb69evj5s2bmdqmpKQgNjaWf5GSzujXrx8CAwOxf/9+dOvWDa9fv5Y7Eump169fo2vXrjhw4AACAwPRt29fuSMR0Tt0rgcwPj4eAGBmZpa+rVixYkhISMjUNioqCoB0yfjatWuoWLEivLy80LZt2yzfOyUlJcOku3FxcR/NI4RAamoqlEplrvaDNIexsTEMDQ3ljpFjXbt2xcGDB9GtWzd07NgR+/btQ8mSJeWORXokJiYGLi4uuHLlCg4ePAhnZ2e5IxHRe3SuAMyq0FIoFFlOlGtoaIgOHTpg4MCBqFu3LjZu3AgXFxfcuHEDFStWzNTey8sLM2fOzHGWN2/eIDIyEomJibnbCdIoCoUCdnZ2MDc3lztKjjk7O+PYsWPo1KkTnJ2dcfjwYVhbW8sdi/RAVFQUOnbsiAcPHuD48eNo2rSp3JGIKAs6Nw1McHAwWrduDaVSCQMD6Qp3UFAQ2rdvj9TU1I9+v6OjIwYMGIApU6Zkei2rHkB7e/ssh5GrVCrcunULhoaGKFOmDIoUKQKFQpHPvSN1E0Lg+fPnSExMRPXq1bWqJxAArl69ivbt26NkyZI4duwY73WlQvXo0SO0b98esbGxOHr0KOrWrSt3JKIscRoYHewBTOuliY6OhpWVVfq/c3qA69Spg8ePH2f5momJSY5vqn/z5g1UKhXs7e0zXI4m7VOmTBncv38fb9++1boC0NHREadPn0a7du3QqlUrHDt2DNWqVZM7FumgW7duoV27dlAoFAgJCeHvGZGG07lBIGm9NKGhoenbwsLC4ODgkKntihUr0LVr1wzbbt++XaAT6ab1QpL20vae22rVqiEkJARFixaFk5MTrl69Knck0jFXr16Fk5MTzMzMcPr0aRZ/RFpA56qT4sWLo0ePHpg4cSIuXLiAAwcO4LfffsNXX30FAEhKSkpv26FDBxw/fhwrVqzAjRs3MH/+fISHh6N///5yxScqFPb29ggODka5cuXQunVrXLhwQe5IpCPOnz+P1q1bo3z58ggODuZtBkRaQucKQADw8fFBrVq14OzsjEGDBsHT0xMjRozAgwcPYG9vj0ePHgEAatSogcDAQKxbtw6NGjWCr68vdu3axb9eSSdZW1sjKCgIDg4OaNu2LYKCguSORFouKCgIbdu2Re3atXHixAmUKVNG7khElEM6NwhEnT50E2lycjLu3buHypUro2jRojIlpIKga8fy9evX6NmzJ4KDg7F9+/ZMt0EQ5cTevXvRp08ftG7dGgEBAShWrJjckYhyjINAdLQHkArXo0eP0KZNG9SuXRv16tXD9u3b5Y5EuVCsWDHs3bsXnTt3hqurK/z9/eWORFrGz88PPXv2hIuLC/bs2cPij0gLsQCkXDMyMsKSJUvwzz//4MiRIxgzZgxXnNAyJiYm2LZtG9zc3ODu7g5vb2+5I5GWWLNmDb788kt8+eWX2Lp1K5cbJNJSOjcNDBU+Gxsb2NjYAADKlSsHKysrREdHsxdAyxgZGWH9+vUoUaIERowYgdjYWEyYMEHuWKTBFixYgB9//BGjRo3CkiVLOMsBkRZjAUj5EhoaCqVSCXt7e7mjUB4YGBhg2bJlsLCwwMSJExEbG4uff/5Z66e+oYIlhMDUqVMxd+5cTJ06FbNmzeLvCJGWYwFIeRYdHY2BAwfCx8dH7iiUDwqFArNnz04vAuPi4ti7Q+lUKhW+//57rFixAgsXLsT48ePljkREBYD/h6dM/P39YWpqisjIyPRtQ4YMQb169RAbGwtAWhavR48emDRpElq2bClXVCpAEyZMwOrVq7FixQoMHTo0R0snkm5LTU3FkCFDsHLlSqxZs4bFH5EOYQFImfTv3x81atTA3LlzAQDTp0/HsWPHcPDgQVhYWEAIgcGDB+Pzzz9Pn2CbdMOIESPg6+uLzZs3o1+/fhnWvib9kpKSgr59+8LPzw++vr7w8PCQOxIRFSBeAqZMFAoF5syZg969e6NcuXJYvnw5QkJCYGtrCwA4c+YMtm7dinr16mHXrl0AgE2bNsHR0VHG1FRQBgwYAHNzc/Tp0wfdunXjHG966N25IgMDA9GlSxe5IxFRAeNE0PmQl4mgExMTERERodactWrVgpmZWa6/r1GjRvj7779x5MgRtG7duhCSaQddmwg6p4KCgtCtWzfUr18f+/btQ8mSJeWORGoQExMDFxcXXLlyBXv27IGzs7PckYgKHCeCZg+g2kVERKBx48Zq/czQ0FA0atQoV99z6NAhREREQKlUomzZsoWUjDSZs7Mzjh07hk6dOsHZ2RmHDx+GtbW13LGoEEVFRaFjx4548OABjh8/jqZNm8odiYgKCQtANatVqxZCQ0PV/pm5cenSJfTt2xdr167Fhg0bMG3aNK72oaeaNWuGU6dOoX379vjss89w7Ngx2NnZyR2LCsGjR4/Qvn17xMbGIjg4GHXr1pU7EhEVIhaAamZmZpbr3jh1un//PlxcXDBlyhQMGDAAVapUQYsWLXDp0iWNzk2Fx9HREadPn0a7du3QqlUr7Nq1Cw0aNJA7FhWgy5cvo0ePHlAoFAgJCUG1atXkjkREhYyjgClddHQ0vvjiC3Tv3h2TJk0CIPUAderUCVOmTJE5HcmpWrVqCAkJgYWFBT755BNMmDCBy//pgNevX2P8+PFo0qQJSpYsidOnT7P4I9IT7AGkdKVLl85ygMr+/ftlSEOaxt7eHn/99RcWL16MWbNmYfv27fjtt9/QuXNnuaNRHuzfvx/fffcdoqKiMHv2bIwbNw7GxsZyxyIiNWEPIBHlWJEiRTB58mRcu3YNNWrUgIuLC/r165dh0nDSbJGRkejbty+6dOmCmjVr4tq1a5g0aRKLPyI9wwKQiHKtatWqOHz4MDZv3oygoCA4ODhg9erVUKlUckejbKhUKqxevRoODg44efIkfH19cfjwYVStWlXuaEQkAxaARJQnCoUC7u7uiIiIQO/evfHtt9/CyckJ165dkzsavefatWto1aoVvv32W/Tp0wcRERFwc3ODQqGQOxoRyYQFIBHlS+nSpfH777/j1KlTiI6ORsOGDTFlyhQkJSXJHU3vJSUlYcqUKWjYsCFevXqFU6dOwcfHB6VLl5Y7GhHJjAUgERWIzz77DGFhYZg2bRoWL16MunXr4ujRo3LH0ltHjx5F3bp1sXjxYkybNg1hYWH47LPP5I5FRBqCBSARFRgTExP873//w5UrV1ChQgV06NABX375JaKiouSOpjeioqLg7u6ODh06oEKFCrhy5Qr+97//wcTERO5oRKRBWAASUYGrWbMmTpw4gfXr1+PgwYOoVasW1q5dCy49XnhUKhXWrl2LWrVq4dChQ1i/fj1OnDiBmjVryh2NiDQQC0AiKhQKhQKDBw9GREQEunTpguHDh6NNmzZZzjVJ+XP9+nW0adMGw4cPR9euXREREYHBgwdzkAcRZYsFIBEVqjJlymDjxo04duwYnj59inr16mH69OlITk6WO5rWS05OxvTp01G/fn1ERkbi2LFj+OOPP1CmTBm5oxGRhmMBSERq0bZtW1y5cgUTJ06El5cX6tevj6CgILljaa2goCDUr18fXl5e+PHHH3H16lW0bdtW7lhEpCVYABKR2piammL27Nm4fPkyypQpg88//xxDhgzBy5cv5Y6mNV68eIHBgwfj888/R5kyZRAWFoaff/4ZRYsWlTsaEWkRFoBEpHZ16tRBcHAw1qxZg8DAQNSqVQsbN27kIJEPEEJg48aNqFWrFnbv3g1vb28EBwejdu3ackcjIi3EAlDDKZXAyZOAv7/0VamUO5H6jBgxAu7u7jlu//LlS1hbW+P+/fs5/p7+/ftj8eLFeUhH+WVgYAAPDw9ERESgXbt2GDRoEJydnbFp0yZER0fLHU9jREdHY9OmTXB2dsagQYPQvn17XL9+HV9//TUMDPi/cCLKG/7fQ4MFBACVKgHOzoCbm/S1UiVpe2Hy8vJCkyZNULx4cVhbW6NHjx64ceNG4X5oNjm8vb1z3H7OnDno3r07KlWqlOPvmTp1KubMmYPY2Ng8JKSCUK5cOfj7++PgwYNITk7GwIEDYW1tjXbt2mHFihV49OiR3BHV7tGjR1ixYgXatm0La2trDBw4EMnJyTh48CD8/f1Rrlw5uSMSkZZjAaihAgKA3r2Bx48zbn/yRNpemEXgqVOn4OnpiXPnzuHo0aN4+/YtOnTogNevX3/0e9u0aYMNGzYUSI7SpUujWLFiOWqbmJiItWvXYtiwYbn6jLp166Jq1arYvHlzXiJSAfriiy9w7tw5PH78GMuXL4ehoSHGjh2LChUqoEmTJpgzZw7+/vtvnbxMLITA33//jTlz5uCTTz5BhQoVMHbsWBgZGWH58uV48uQJzp07hy+++ELuqESkI1gAaiClEvj+eyCr81zatjFjCu9y8KFDhzB48GDUqVMH9evXx4YNG/Dw4UOEhoYW2GeoVCrMnTsX1atXR9GiRVG2bFkMHjw4/fX79+9DoVDg/v37uHPnDhQKBfbt24e2bdvCzMwMNWvWxPnz59PbHzhwACYmJmjevHmGz/H394epqSkiIyPTtw0ZMgT16tVL7/Xr2rUrtmzZUmD7Rvlja2uLb7/9FocPH8bz58/h6+uLypUrw8vLC3Xr1kXNmjUxceJEnD17FiqVSu64eaZSqXD27FlMnDgRNWrUQN26dTFv3jxUqVIFvr6+eP78OQ4fPoxvv/0W5cuXlzsuEekYnSwAo6Oj0bdvX5ibm6NixYqYNWtWtieKZcuWwd7eHhYWFujatSsev9/lVsASE4FLlz78WLs2c8/fu4QAHj2S2n3svS5dkj4zP9IKpYJcQN7LywtbtmyBt7c3bty4gcDAwAzrlIaHh6NkyZKoVKkSwsPDoVAo8Msvv2DatGkIDw9HhQoVMGnSpPT2ISEhaNy4cabP6d+/P2rUqIG5c+cCAKZPn45jx47h4MGDsLCwAAA0bdoUFy5cQEpKSoHtHxWMkiVLws3NDdu2bcOLFy+wb98+tG7dGhs2bMCnn36K8uXLY8SIETh48KBWHL+UlBQcPHgQI0aMQPny5fHpp59iw4YNaNOmDfbt24fnz59j27ZtcHNzQ8mSJeWOS0S6TOignj17iqZNm4qLFy+KvXv3CktLS7Fo0aJM7Xbv3i1MTU2Fn5+fCAsLE506dRKOjo45/pzY2FgBQMTGxmZ6LSkpSfzzzz8iKSkpw/bQUCGkEk59j9DQ3P8M0yiVSuHi4iI+/fTTHLVv3bq1WL9+/UfbOTk5iSlTpmT7+owZM8Rnn30mhBDif//7nyhVqpSIiopKf33ZsmWiTp066c+7d+8uhg4dmuV77d27V5iYmIjZs2eLUqVKiWvXrmV4PTw8XAAQ9+/fz/L7szuWJJ/U1FQREhIixo0bJ6pUqSIAiOLFi4t+/foJf39/ERMTI3fEdDExMcLf31/069dPFC9eXAAQVapUEePGjRMhISEiNTVV7ohEeudD5299YSRr9VkIEhISsGfPHpw5cya9R2js2LHw9/fHuHHjMrT18/PDoEGDMGDAAACAj48P7OzscO3aNdStW7dQ8tWqBXzsSurFi8CIER9/rzVrgE8+ydln5pWnpyeuXbuG06dPZ/n63Llz03vXACApKQnnzp3DyJEj07f9888/qFChQobv69atG3788UdcvHgRffr0Qa9evVCqVKn018PDw9GgQYP0f3fv3j3D6gb37t1DtWrVMnxudvOgdenSBbVr18asWbNw5MgR1KlTJ8PrpqamAKT7CEk7GBoaolWrVmjVqhUWLlyIa9euYdeuXdi1axcGDBgAY2NjtG3bFj169EC3bt1gY2Oj1nyRkZHYs2cPAgMDceLECbx9+xaNGjXChAkT0KNHD9StW5fLtBGRrHSuALx9+zaUSiUcHR3Tt9WvXx/z58/P1DYiIgIeHh7pz21tbWFpaYmbN28WWgFoZgY0avThNvXrAz//LA34yOo+QIUCsLMDhg0DDA0LJSYAYOTIkdi3bx+Cg4NhZ2eXZZtvvvkGffv2TX/u7u6OXr16wdXVNX1bVvcvjR8/Ht26dcOuXbvw66+/pheDlStXBgCEhYWhS5cuAKQCcPLkyRm+PywsLMMlYysrK7x69SrLjIcOHUJERASUSiXKli2b6fW0KUe4fJZ2UigUcHR0hKOjI6ZNm4YHDx5g9+7d2LVrFzw9PfHtt9+iefPm6NGjB1q0aAHDQvqPRqlU4s8//0RgYCDOnTsHQ0NDfPbZZ1i0aBG6d++OihUrFsrnEhHlhc4VgPHx8QAAMzOz9G3FihVDQkJClm3fbfehtoB0/8679xnFxcUVRORMDA2BpUul0b4KRcYiMK3TYMmSwiv+hBAYNWoUAgMDcfLkyfSiLCulS5fOcG+gqakprK2tM/TOZadGjRqYOHEiRo8ejRIlSuCff/5B5cqVERcXh/v376NBgwaIjY3F/fv30bBhwwzfGxYWhtGjR6c/b9iwYZYjeS9duoS+ffti7dq12LBhA6ZNm4bt27dnaHPt2jXY2dnBysrqo5lJ81WsWBGjR4/G6NGj8fLlS+zbtw+7du3CjBkzkJSUVKifbWpqio4dO2LDhg3o0qULLC0tC/XziIjySucKQGUWQ2MVCkWWU0dk1za7ASNeXl6YOXNm/kPmgKsrsGOHNBr43QEhdnZS8fdOB1uB8/T0hJ+fH3bv3o3ixYvj33//BQBYWFikXy7NjwULFqBcuXJo0qQJDAwMsGbNGlhaWqJly5YApB4/Q0ND1KlTBxcuXICRkVGGHt0HDx7g1atX6ZeIAaBjx46YPHkyXr16lX4p+f79+3BxccGUKVMwYMAAVKlSBS1atMClS5fQ6J1u2JCQEHTo0CHf+0Wax9LSEoMGDcKgQYOQmJiYq0nC86JSpUqZ/qgkItJEOlcAps2Mr1Kp0v8thMjyso+BgUGmYk8IASOjrH8skydPxg8//JD+PC4uDvb29gUVPRNXV6B7dyAkBIiMBGxsACenwr3sCwCrVq0CIM3p967169dnmKolr5KTkzFnzhw8fPgQ5ubm+PTTT3HixIn0wi08PBy1atWCiYkJwsPDUbNmzQz3912+fDl9hHAaR0dHNGrUCNu2bcOIESMQHR2NL774At27d08fLdysWTN06tQJU6ZMwaFDh9Kz7Nq1K/056S4zMzMum0ZE9P8UIquuMS126dIlNG7cGM+fP0+/pLdz5058/fXXmZaXqlevHgYOHIjx48enbytevDh8fX3RrVu3j35WXFwcLCwsEBsbixIlSmR4LTk5Gffu3UPlypW5SLua7N+/HxMmTMC1a9dyvETWqlWrEBgYiCNHjmTbhseSiEi3fOj8rS90bh7A6tWrw9DQMMOkxWFhYXBwcMjU1sHBIUO7O3fuICEhIcu2pPlcXFzg4eGBJ0+e5Ph7jI2NsXz58kJMRUREpHl07hJw8eLF0aNHD0ycOBGlSpXCixcv8Ntvv2HOnDkApOlC0u5j++qrr9CrVy9s2LABjRo1wqRJk9CsWTNUr15dzl2gfBgzZkyu2g8fPrxwghAREWkwnesBBKT5/GrVqgVnZ2cMGjQInp6eGDFiBB48eAB7e/v0xeW7dOmCxYsXY+rUqWjatClUKlWmEaJEREREukbn7gFUJ94DqB94LImIdAvvAdTRHkBNwvpa+/EYEhGRrmEBWEiMjY0BcHkxXfDmzRsAKLQVJIiIiNRN5waBaApDQ0OULFkSUVFRAKQ5yLj2p/ZRqVR4/vw5zMzMsp0fkoiISNvwjFaIypUrBwDpRSBpJwMDA1SoUIEFPBER6QwWgIVIoVDAxsYG1tbWePv2rdxxKI+KFCmS44mliYiItAELQDUwNDTk/WNERESkMditQURERKRnWAASERER6RkWgERERER6hvcA5kPaBMFxcXEyJyEiIqKcSjtv6/NE/ywA8yE+Ph4AYG9vL3MSIiIiyq34+HhYWFjIHUMWXAs4H1QqFZ4+fYrixYsX+BxxcXFxsLe3x6NHj3RynULun/bT9X3k/mk/Xd9H7l/eCSEQHx+P8uXL6+00X+wBzAcDAwPY2dkV6meUKFFCJ//DTsP90366vo/cP+2n6/vI/csbfe35S6OfZS8RERGRHmMBSERERKRnWABqKBMTE0yfPh0mJiZyRykU3D/tp+v7yP3Tfrq+j9w/yg8OAiEiIiLSM+wBJCIiItIzLACJiIiI9AwLQCIiIiI9wwJQA1y7dg3Ozs6wsLBApUqVMHfu3GyXp1GpVPjpp59gbW0NKysrfPnll3j16pWaE+fNnTt3MG7cOLi6un60rb29PRQKRYbHuXPn1JAy73K6f9p4DO/fv4+OHTvC1NQUNWrUwOrVqz/YXluOX3R0NPr27Qtzc3NUrFgRs2bNgkqlyrLtsmXLYG9vDwsLC3Tt2hWPHz9Wc9q8yc0+Ojk5ZTpuW7ZsUXPi3ImMjMTMmTPRsmXLD7bT1uMH5HwftfH4AcCjR4/QrVs3lC5dGra2thg3bhxSUlKybKvNx1HjCJJVbGyssLa2FiNHjhR///232L59uzAzMxPr1q3Lsv3SpUuFlZWVOHDggPjrr79E48aNRZcuXdScOvc6d+4sDA0NhZWVlWjduvVH2xcpUkQcPXpUPHr0KP2RkpJS+EHzKDf7p43HsGHDhqJLly4iPDxcbNq0SRQtWlTs2LEj2/bacvx69uwpmjZtKi5evCj27t0rLC0txaJFizK12717tzA1NRV+fn4iLCxMdOrUSTg6OsqQOPdyuo9CCFG9enWxbt26DMctMTFRzYlzzsPDQxgbGwtra2tRsWLFbNtp8/HL6T4KoX3HTwghUlNTRZ06dUTv3r3FlStXxOHDh0XZsmXF//73v0xttfk4aiIWgDLbuHGjsLW1FUqlMn3b119/LVxdXbNs36xZMzFv3rz056dPnxYGBgYiJiam0LPmx7hx48TNmzfF9OnTP1ogvXr1SgAQkZGR6glXAHKzf9p2DK9fv57peAwfPlz06tUry/bacvzi4+OFoaGhOHfuXPq22bNni8aNG2dq269fP/HNN9+kP3/8+LEAIK5evaqWrHmVm30UQggLCwvx559/qitevk2fPl1cvnxZrF+//oPFkbYePyFyvo9CaN/xE0KI4OBgYWxsLOLi4tK3zZkzRzRq1ChTW20+jpqIl4Bl1rRpU2zevDnDWoRFixaFkVHWq/RFRETA0dEx/Xn9+vWhUqlw586dQs+aH4sWLUL16tVz1PbZs2cwMDBAmTJlCjlVwcnN/mnbMYyIiECZMmVQrly59G3169fHzZs3s2yvLcfv9u3bUCqVmY5FVvv1/jGztbWFpaVltj8DTZGbfUxJSUFsbCzKli2rzoj5MmPGDDRo0OCj7bT1+AE530dtPH4AUKlSJQQGBqJ48eLp27I7B2rzcdRELABlVrNmTbRp0yb9eUJCAnbs2IGePXtm2T4+Ph5mZmbpz4sVK5b+fboiKioKRkZGaNu2LaytrdG6dWuEhYXJHavAaNsxfD8vIGXOLq+2HL/4+HgAyHQsstqv3P4MNEVu9jEqKgoAMHz4cJQtWxZNmzbF8ePH1RO0kGnr8csNbT1+9vb2cHFxSX+uUqmwadOmLM+B+nAc1YkFoJqkpKQgOTk5w+PNmzeZ2o0aNQoVKlRA3759s3yf92/eVigUWW6XQ0738WMsLCzQpk0bjB8/HocOHYK9vT3at2+ffjKTS0Htn6Yew+z2T6lUZmqrUCiyzaupx+992e2XyGIAVm5/BpoiN/toaGiIDh06YOjQoThy5AicnJzg4uKCBw8eqCNqodLW45cbunL8fv75Z8TExGD06NGZXtOH46hOLADVpGbNmjA1Nc3w+OyzzzK0WbFiBfbs2QN/f/8Ml4Tf9f4ve9r/yLO7ZKxOOdnHnKhXrx4OHz6MLl26oFGjRli7di2EENi7d28hpM65gto/TT2G2e2fgYFBpv/BCiGyzaupx+99af+NvX8sDA0Ns2ybm5+BpsjNPpYvXx6HDx+Gu7s76tevj8WLF6N69erw9fVVW97Coq3HLzd04fjt3bsXCxYswLZt2zL19AH6cRzViT81Nbl///4HXz9y5AgmTpyIgwcPonLlytm2Mzc3R3R0dPrztH+XKFGiQHLmx8f2Ma9MTExQrVo12Yf7F9T+aeoxzG7/AgICMuQFpMw5zaspx+995ubmAKR9sbKySv93Vvv1/jH7UFtNkpt9zEqdOnU07rjlhbYev/zSpuN35coVuLu7w8fHB02aNMmyjb4ex8LCHkANEBERgX79+mHlypVo3br1B9s6ODggNDQ0/XlYWBiMjY1RrVq1wo6pNhMnToSnp2f6c6VSifv376N8+fIypio42nYMHRwc8Pr1a9y4cSN9W1hYGBwcHLJsry3Hr3r16jA0NMx0LLLar/eP2Z07d5CQkJDtz0BT5GYfV6xYga5du2bYdvv2bY07bnmhrccvN7T5+D179gxdu3bF2LFj4ebmlm07fTiOaiXP4GNK8/LlS1GtWjUxaNCgDHM3PXr0SKSmpgohRIZ5nJYvXy4sLCzErl27xMWLF0Xjxo1Fv3795Iqfa9lNk/LuPp48eVKYmpoKf39/cf36dfH999+LkiVLilevXqkvaB7lZP+08Rg2btxYtG3bVly+fFn4+vqKokWLioMHD6a/rq3Hr1evXqJevXri/PnzYv/+/aJ06dJi1apVQoiM+7R3715RpEgRsX79ehEeHi46deokmjVrJlfsXMnpPt64cUOYmpqK5cuXi4iICDFv3jxhZGQkbt26JVf0HMtqihRdOX5pPraP2nr8kpOTRfPmzUW7du3Ew4cPM5wDk5OTde44ahIWgDLbsGGDAJDl4969e+LMmTOiXLlyIjk5WQghhEqlElOnThVWVlbCzMxM9O3bVyNPrNnJqkB6fx+FEGLz5s2iVq1aolixYqJp06YZ5jHTZDnZP208hg8ePBAdO3YUJiYmwtbWVqxYsSL9NW0+ftHR0aJv377CzMxMWFlZiWnTpgmVSiXu378vLC0txcOHD9PbLl++XNja2goTExPRsWPHDK9pstzs46FDh0TDhg2FmZmZcHR0FPv27ZMxec69Xxzp0vFLk5N91Mbjd/LkyWzPgRs2bNC546hJFEJks+YYEREREekk3gNIREREpGdYABIRERHpGRaARERERHqGBSARERGRnmEBSERERKRnWAASERER6RkWgERERER6hgUgERERkZ5hAUhERESkZ1gAEhEREekZFoBERO/YunUrzMzM8OTJEwDAyZMnYWhoiL/++kvmZEREBYdrARMRvaddu3aws7PD+vXr8cknn6Bp06ZYtWqV3LGIiAqMkdwBiIg0zcqVK9GgQQNYWlri0aNHOHbsmNyRiIgKFAtAIqL31KxZE2PHjoWXlxfWrl2LUqVKyR2JiKhA8R5AIqIsxMTEAABiY2PlDUJEVAhYABIRvefixYtYu3YtFi1ahOnTp+Pp06dyRyIiKlAcBEJE9A6VSoVmzZqhadOmWLlyJb744gtYWFhg69atckcjIiowvAeQiOgdq1evxq1bt3Dw4EEAwOLFi1G/fn0cPXoU7du3lzkdEVHBYA8gERERkZ7hPYBEREREeoYFIBEREZGeYQFIREREpGdYABIRERHpGRaARERERHqGBSARERGRnmEBSERERKRnWAASERER6RkWgERERER6hgUgERERkZ5hAUhERESkZ1gAEhEREemZ/wMtRB+UoYjq3QAAAABJRU5ErkJggg==", "text/html": [ "\n", "color | marker | linestyle |
---|---|---|
\n", "\n", "| | |\n", "| --: | :-- |\n", "| Black | 'k' |\n", "| Blue | 'b' |\n", "| Green | 'g' |\n", "| Red | 'r' |\n", "| Cyan | 'c' |\n", "|Magenta| 'm' |\n", "| Yellow| 'y' |\n", "| White | 'w' |\n", "\n", " | \n", " \n", "| | |\n", "| --: | :-- |\n", "| Point | '.' |\n", "| Circle| 'o' |\n", "| Square| 's' |\n", "| Star | '*' |\n", "| Plus | '+' |\n", "| x | 'x' |\n", "|Diamond| 'D' |\n", "|Down Triangle| 'v' |\n", "|Up Triangle| '^' |\n", " \n", " | \n", " \n", "| | | |\n", "| --: | :--: | :-- |\n", "| Solid | '-' | 'solid' |\n", "| Dashed| '--' |'dashed'|\n", "|Dash-dot| '-.' | 'dashdot' |\n", "| Dotted| ':' | 'dotted' |\n", " \n", " |